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A B S T R A C T

Coded-aperture gamma-ray imaging has great application value in the fields of nuclear security, nuclear facility
decommissioning, and decontamination verification. However, conventional reconstruction methods cannot
handle the signal-independent noise. In this paper, a coded-aperture imaging reconstruction method based on
convolutional neural network (CNN) was proposed to improve the performance of image reconstruction and
enhance the source position recognition ability of imaging systems. In addition, a compact gamma camera
based on cadmium zinc telluride (CZT) pixel detector and uniformly redundant array (MURA) mask was
modeled. Monte Carlo simulation data were used to train CNN and test the performance of this method.
Furthermore, the reconstruction of the CNN method and the correlation analysis method with different
radioactive sources and measurement conditions were compared. Results show that the proposed method can
suppress the reconstructed image noise well. The reconstructed images have higher contrast-to-noise ratio
(CNR) than the correlation analysis method in radioactive source location.
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1. Introduction

Radioactive source, reactor, and irradiation devices have been em-
ployed in various fields of industrial production. In this respect, nuclear
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security and safety has become a great challenge [1–3]. Accurate

localization and identification of radioactive materials is crucial in
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the search for orphan radioactive sources [4], nuclear facility de-
contamination and decommissioning [5,6]. A coded-aperture gamma
camera is capable of intuitively giving the radioactive distribution,
providing a direct and accurate reference for localization of radioac-
tive hot spots [7–11]. Unlike the single-pinhole imaging method, the
coded-aperture approach introduces a multi-hole mask to improve the
photon pass rate and signal-to-noise ratio (SNR) of images [1,12–15].
This approach reduces imaging time and radiation risk and improves
work efficiency. In nuclear fuel plants and reactors, a coded-aperture
gamma camera can provide great assistance in identifying radioac-
tive leaks and contamination of pipelines [7,9]. In addition, a coded-
aperture gamma camera can provide radiation pollution distributions
and decontamination verifications in areas of nuclear accidents [16,
17].

Conventional reconstruction methods of coded-aperture imaging in-
clude correlation analysis method and iterative decoding algorithm [18,
19]. In the first case, the correlation analysis method can acquire
a theoretical optimal reconstructed image by choosing the encoding
and decoding arrays of which correlation approximates a delta func-
tion [12]. In the actual imaging process, the reconstructed image
contains a considerable amount of noise from photon scattering and
transmission, statistical fluctuation, and detector systems. However, the
correlation analysis method cannot reduce noise and can only improve
the quality of reconstruction by increasing exposure time [1]. The
correlation analysis method has strict requirements for the design of
the encoding array, thereby limiting the flexibility of the encoding
mask design. In the other case, iterative decoding methods such as
maximum entropy methods (MEM) [20] or maximum-likelihood expec-
tation maximization (MLEM) algorithm [21,22] can greatly improve
the reconstructed image. However, the reconstruction is much slower
and requires high computing power, even in the simplest cases, thereby
hindering large-scale array and real-time measurement.

Considering the remarkable progress has been achieved in computer
science and neuroscience research over the past decades, artificial
neural networks and deep learning methods [23] have been successfully
applied to many nuclear technologies such as energy spectrum analysis
and nuclide identification [24–26]. Back-propagation neural network
has been used to simulate the MLEM algorithm in coded-aperture
imaging, which speeded calculation in large array obviously [27].
Convolutional neural network (CNN) is the state-of-the-art function
approximators for computer vision problems and is well suited for the
deconvolution task [28,29], which means it possesses enough compu-
tational capacity to process reconstruction, including noise suppression
in coded-aperture imaging.

To accelerate the acquisition of low noise reconstructed images, a
reconstruction method based on CNN was proposed. A compact gamma
camera based on a cadmium zinc telluride (CZT) pixel detector was
built in the Particle and Heavy Ion Transport code System (PHITS) [30]
to simulate the gamma-ray imaging process and obtain a training set for
CNN. Reconstructions of the trained CNN and the correlation analysis
method under various test conditions were compared.

2. Principle

Unlike a small-diameter, single-hole imaging device, the coded-
aperture approach uses a multi-hole mask as a collimator, which is
placed in front of and parallel to the detector. Coded-aperture imaging
involves encoding and decoding processes [12,31,32]. Photons emitted
from the source are modulated by the coded-aperture mask and then
detected by the detector. An overlapping image of the object is then
recorded. The purpose of the decoding procedure is to reconstruct the
recorded image to the raw image that represents the real position and
shape of the object (see Fig. 1).

Uniformly redundant array (URA) [12,33] and modified uniformly
redundant array (MURA) [18] based coded apertures are the two of
the most commonly used apertures in gamma-ray imaging. MURA

can be designed to be square-shaped or hexagonal, and has been
widely used in radiation monitoring. Correlation analysis is a conven-
tional reconstruction algorithm that uses the auto-correlation features
of coded-aperture arrays. If the distribution of the transparent and
opaque elements of the aperture can be represented as a binary encod-
ing array as A and the decoding array as G, then A and G can be chosen
such that the correlation of A with G approximates a delta function [1].
Thus, an ideal reconstructed image can be obtained using the corre-
lation analysis method when the noise term is negligible. Noise can
considerably affect imaging results because of limitations of imaging
time and device design, thereby resulting in image degradation. In this
paper, a new reconstruction method based on CNN was proposed to
obtain low noise reconstructed images.

As a feedforward artificial neural network, CNN’s artificial neu-
rons can respond to a part of the coverage of surrounding elements,
which enables them to perform well in image reconstruction and object
recognition [23]. A CNN consists of one or more convolutional, pool-
ing and fully connected layers, and each convolutional layer contains
multiple feature maps, thereby ensure that taking advantage of the two-
dimensional structure of the input is possible. Fig. 2 illustrates the basic
architectures of CNN. Unlike other neural networks, the input data of
CNN are two-dimensional data, and no artificial feature extraction is
needed, thus simplifying the operation while retaining all the original
features of the data. Two-dimensional convolution operation and pool-
ing reduce the amount of data. The way many neurons in a given layer
share the same feature map speeds up the computation. Therefore, the
model training can be completed in a short time.

In this paper, the CNN includes one input layer, two convolution
layers, one pooling layer, one fully connected layer, and one output
layer. The number of feature maps of the two convolutional layers is
10. The size of convolution kernel in the first convolutional layer is
4 ∗ 4, and in the second convolutional layer is 3 ∗ 3. The size of the
receptive fields is 17 ∗ 17, which is the same size as the image. The
maximum pooling was used in the pooling layer, and the pooling scale
is 2 ∗ 2. The mean square error cost function was used for training the
network. The activation function is rectified linear unit (ReLU), and the
output function is sigmoid function.

3. Methods

To ensure the good generalization capability of the CNN, the train-
ing data must be sufficient and diverse. The Monte Carlo method
provides great convenience for obtaining a large amount of imag-
ing samples. The proposed method mainly includes two parts: coded-
aperture imaging simulation and CNN training. After a gamma camera
model is constructed in PHITS, coded images in a variety of situations
can be obtained by setting different source conditions and imaging
time. The raw and coded images are used to train CNN. In practical
application, the coded image acquired by the gamma camera is input
into the trained CNN to obtain the reconstruction result (see Fig. 3).

3.1. Construction of gamma camera

The CZT detector is one of the most commonly used room tem-
perature semiconductor detectors. It has a high energy-resolution and
no refrigeration requirements, thereby making it widely used in X-
ray and gamma-ray detection. CZT pixel detectors are widely used
in the field of medicine and astronomy for X-ray and gamma-ray
imaging [34,35]. The active area of the CZT detector employed in this
paper is 25.5 × 25.5 × 5 mm3, divided into 17 × 17 pixels, with a
single pixel size of 1.5 mm × 1.5 mm. A 33 × 33 array mask (a mosaic
of two cycles of 17 × 17 MURA mask) [12,18] was used to modulate
the incident photons that are stopped by CZT. The size of the single
hole is the same as that of the detector pixel. The mask has a length
and width of 49.5 mm while the thickness of mask and surrounding
shield is 5 mm. The material of the mask is tungsten. Fig. 4 shows the
3D model of the designed gamma camera, wherein the MURA mask
is parallel and center-aligned with the CZT array with a distance of
33 mm.

42



R. Zhang, P. Gong, X. Tang et al. Nuclear Inst. and Methods in Physics Research, A 934 (2019) 41–51

Fig. 1. Basic steps involved in coded-aperture imaging [12].

Fig. 2. Architectures of CNN.

Fig. 3. Block diagram of the CNN method for coded image reconstruction.

Fig. 4. On the left: schematic of rank 17 mosaic MURA mask and CZT detector. On
the right: 3D model of gamma camera in PHITS.

3.2. Acquisition of simulation data and CNN training

In the training data acquisition, a Cs-137 source with a radioactivity
of 3.7E7 Bq was placed 1 m away from the mask. The source was
a small, isotropic cylindrical source, and the photons were approx-
imately incident from one point to the coded mask. Coded images
under different conditions can be obtained by changing the position

of the sources and imaging time. An array representing the location
of the radioactive source, that is, the raw image, was obtained by
discretizing the detection plane into a 17 × 17 image, where 1 indicates
the presence of a source, and 0 indicates no source. A raw image
and a coded image obtained by the detector form a dataset. One to
three radioactive sources in different locations were randomly set in
the detection plane in each dataset. The simulation imaging time is
20 s. Fig. 5 shows the acquisition of a simulation dataset when the
number of sources is 3. The total number of simulated datasets is one
million. The distribution of the radioactive sources of the simulated
data used in the training and verification of CNN model was randomly
selected from all cases in which the number of sources was one to
three, and the total number of simulated datasets was one million. All
datasets were divided into two parts; 90% constitute the training set,
and 10% constitute the validation set. The training and validation sets
were used to tune the CNN’s structure and hyperparameters such as
step size, number of iterations and batch size. The code was developed
and operating in MATLAB. The training of the CNN model was carried
out on a 3.4 GHz CPU with the time of 50 h.

3.3. Method for evaluating reconstructed images

To illustrate the reconstruction capability of the CNN method,
contrast-to-noise ratio (CNR) [36] was used to evaluate the recon-
structed image ability.

CNR is used to characterize the contrast between the region of
interest and the background noise of the reconstructed image. It can
also be used to illustrate the ease with the location of the source can
be identified directly from the reconstructed image.

𝐶𝑁𝑅 = 𝑉 − 𝐵
𝜎

(1)

where 𝑉 , B, and 𝜎 are the intensity of the signal in the region of interest,
the mean value of the background, and the standard deviation of the
background, respectively. In this paper, the region of interest means
the pixels which correspond to the original point source locations. CNR
is used as an index for identifying the target and the contrast of the
background in the image. A large CNR corresponds to the easy of
direct identification of the position of the source from the reconstructed
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Fig. 5. Acquisition of a coded-aperture imaging simulation dataset when the number of sources is three.

image, which is important in the practical application of radioactive
source search. When comparing the CNR of images obtained by the two
methods, the result after using a simple numerical cut-off process is also
shown (Sections 4.1 and 4.6). If mu is the average of pixel values and
sigma is the standard deviation of pixel values, setting all pixel values
below (mu + 3 × sigma) to zeros could maximize noise removal while
preserving the signal.

4. Results and discussion

4.1. Reconstruction of single radioactive source in the field-of-view

Image reconstruction using the CNN method was simulated when
the radioactive single source was located in 289 different locations
within the field-of-view (FOV). A total of 289 different regions within
FOV correspond to 17 × 17 pixels of the reconstructed image; in
each case, a radioactive source was located in one of the regions.
The imaging time was 20 s, and other conditions were the same as
the training data acquisition conditions. Fig. 6 shows the CNR of the
reconstructed images obtained by the CNN method and correlation
analysis method. The pie chart indicates the proportion of the cases
which CNR is infinite after using numerical cut-off.

For the 289 single-source cases, raw reconstruction result obtained
by the CNN method have an average CNR of 177.2, and more than
69% of the values are greater than 100. The results obtained by the
correlation analysis method have an average CNR of 10.6, and the
values are distributed between five to twenty. After the numerical cut-
off process, the CNR values of the images obtained by the two methods
are greatly improved. For the CNN method, 81.07% of the 289 CNR
values are infinite, and the average of the remaining CNR values is
49.3. For the correlation analysis method, only 27.68% of the 289 CNR
values are infinite, and the average of the remaining CNR values is 81.3.
The CNR of the image obtained by the CNN method is significantly
higher than that obtained by correlation analysis method. Both methods
can obtain a perfect image that the CNR value is infinite using the
numerical cutoff. It is easier to obtain images without noise using the
CNN method combined with numerical cutoff.

Fig. 6 also shows that the source close to the FOV center provides
large CNR. When the source is located in the outermost region, a
significant deviation appears between the reconstructed images and
the raw image. Analysis shows that the reason for this phenomenon
is that obliquely incident photons produce repeated counts in several
adjacent pixels of the detector, blurring the coded image and resulting

in distortion of the reconstructed images. This phenomenon can be
reduced by lowering the detector thickness or setting small FOV of
the gamma camera. Fig. 7 illustrates the process of this phenomenon
during coded-aperture imaging, and Fig. 8 indicates that reducing the
thickness of the detector can reduce artifacts. When the source is at
the outermost side of FOV, artifacts appear on the opposite side, and
as the source gradually approaches the center of FOV, artifacts appear
in adjacent pixels and the intensity gradually decreases. In the design of
gamma cameras, the trade-off between detector thickness and photon
diffusion should be considered in the design of gamma cameras.

4.2. Reconstruction of radioactive source with different distances and imag-
ing time

When the radioactive point source is located at different distances
from the gamma camera, the images with different imaging time were
reconstructed by using the CNN and the correlation analysis methods.
Fig. 9 shows the CNR values of reconstructed images under different
conditions, and the value is the average of the CNR values of the 20
images in each condition. A Cs-137 source with a radioactivity of 3.7E7
Bq is located at different distances (0.5, 1, 2, 3, 4, and 5 m) and with
different imaging times (5, 10, 20, 30, 40 and 50 s).

In most cases, CNR of images reconstructed by using the CNN
method is generally much larger than that of the images reconstructed
by using the correlation analysis method. However, when the source
is 2, 3, 4 and 5 m from the camera and the measurement time is
5 and 10 s, the CNR of the reconstructed images obtained by the
CNN method is very low, indicating that the reconstructed image is
completely distorted.

For the two methods, the CNR of the reconstructed image of the
source gradually increases with the increase in the measurement time
when the distance between the source and the camera is fixed. How-
ever, the increase of CNR is not obvious after a certain imaging time
is reached because the randomness of data and noise is reduced at a
sufficient imaging time. When the measurement time is fixed, the CNR
of the reconstructed image gradually decreases, as the distance between
the source and the camera increases. This trend can be explained by
a theoretical model of coded-aperture imaging. Suppose a total of N
photons strike the coded mask from a single point source, and assume
that the mask is 100% opaque to photons and that the detector also has
100% detection efficiency. Then, because half of the mask pixels are
holes, the brightness of the reconstructed point source will be (1∕2)𝑁 ,
while the brightness of the background pixels will by (1∕4)𝑁 , and being
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Fig. 6. CNR of 289 reconstructed images using the CNN and the correlation analysis method.

Fig. 7. Transmission of photons in the detector when the source is at the edge of the FOV.

Poisson variables their variance will be the same (1∕4)𝑁 , and hence
their standard deviation will be 𝑠𝑞𝑟𝑡{(1∕4)𝑁}. So the CNR is expected
to be {(1∕2)𝑁 − (1∕4)𝑁}∕𝑠𝑞𝑟𝑡{(1∕4)𝑁} = (1∕2)𝑠𝑞𝑟𝑡{𝑁}. Since N is
proportional to the imaging time T, and inversely proportional to the
square of the distance from the source to the detector D, this means that
the CNR will be proportional to 𝑠𝑞𝑟𝑡{𝑇 }∕𝐷. This is exactly what shown
in Fig. 9 that the CNR values increase like sqrt{T}, while decrease like
1/D. When the source is very close to the camera (0.5 m), the CNR

value of images obtained by correlation analysis method is significantly
reduced. This is due to the artifacts caused by variations in the size of
the mask shadow, which is shown in Fig. 10.

Fig. 10 shows the reconstruction results obtained by the two meth-
ods for different imaging time and distances, and the reconstructed
image quality shows the same trend as CNR. When the signal strength
is high (with the long imaging time and short distance), both methods
can reconstruct the actual position of the sources well, and the images
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Fig. 8. Reconstructed images of the source at the edge of FOV at different detector thicknesses (1 mm, 5 mm, 10 mm). The red dots indicate the actual location of the sources.

Fig. 9. CNR of reconstructed images using the CNN (top row) and the correlation analysis (bottom row) methods.

obtained by the CNN method are purer. In the cases where the distance
is 0.5 m or the distance is 1 m and the imaging time is greater than
20 s, artifacts shown in the images obtained by correlation analysis
method do not appear in the reconstructed images obtained by the CNN
method, which means that the CNN method has the ability to remove
the inherent noise caused by geometry. When the signal strength is
low (with the short imaging time and long distance), both methods
fails to indicate the true position of the source. The effective signal of

the reconstructed image obtained by the correlation analysis method
is progressively overwhelmed as the noise increases, while the image
reconstructed by the CNN method gives a completely wrong signal
position. In low flux conditions, correlation analysis method has the
advantage that it indicates uncertainly where the source may exist,
whereas the CNN method continues to give an unambiguous location
for the point source, but a location that may simply be flat wrong.
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Fig. 10. Reconstructed images of different cases using the CNN and correlation analysis method (with CNR at the bottom right corners).
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Fig. 11. Reconstructed image of the source at different locations from the center using the CNN (left) and the correlation analysis (right) methods (with CNR at the bottom right
corners). The red dots indicate the actual location of the sources.

Fig. 12. Reconstructed images of different types of radioactive sources using the CNN (top row) and the correlation analysis (bottom row) methods (with CNR at bottom right
corners).

4.3. Reconstruction of radioactive source with different positions in the
offset center of FOV

The imaging performance of gamma cameras is greatly affected
by the transmission and scattering process of photons in the coded-
aperture mask. When a photon is obliquely incident through the mask,
the image may be blurred due to the difference of photon track in the
mask. The imaging performance of the CNN method was evaluated with
a Cs-137 source with a radioactivity of 3.7E7 Bq located 10, 20, and
30 cm from the outer margin with an imaging time of 20 s.

Fig. 11 shows that the images obtained by CNN method can ac-
curately distinguish the position of the source when the source is off
the center of FOV. The source was located at the edge of the pixel, so
that adjacent pixel near the source was activated in the reconstructed
image. In all cases, the CNR of the results of the CNN method is higher
than that of the results of the correlation analysis method. The image
obtained by correlation analysis method tends to activate two adjacent
pixels at the same time, and the image obtained by the CNN method is
biased toward one of the pixels.

4.4. Reconstruction of radioactive sources with different energy

In this paper, Cs-137 was used as the source of the CNN model
training data acquisition. To study the applicability of different kinds

of radioactive sources under the designed camera and CNN method,
the reconstructions of several radioactive sources are compared. The
distance between the source and camera is 1 m, the source activity is
3.7E7 Bq and the imaging time is 10 s. Four common industrial and
medical radioactive sources (Am-241, Co-57, Ba-133, Cs-137, Co-60)
are shown in Fig. 12. These source names and their primary gamma ray
energy (Am-241, Co-57, Cs-137, Co-60) or average gamma ray energy
(Ba-133) are given in the upper right corner of the images. The results
show that the CNN method can provide a purer reconstructed image
and a higher CNR value than the correlation analysis method. As the
photon energy increases, the quality of images obtained by correlation
analysis method gradually decreases, while the image obtained by the
CNN method shows significant noise only under Co-60 source. In the
case where the source energy is low, the reconstructed image obtained
by correlation analysis method exhibits the artifact as shown in Fig. 10,
which is because when low-energy photons have weaker penetrability,
the variations in the size of the mask shadow become significant.

4.5. Reconstruction of multiple radioactive sources

In radioactive source supervision in customs ports and the identifi-
cation of radiation pollution after nuclear accidents, accurate identifi-
cation of multiple radioactive sources at the same time is an important
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Fig. 13. Reconstructed images of different numbers of radioactive sources using the CNN (right column) and the correlation analysis methods (left column) with different times
(20 s, 40 s). The red cycles indicate the actual location of sources.

aspect of the performance of gamma cameras. A simulation that uses
one to four radioactive sources was conducted. The Cs-137 sources with
activity of 3.7E7 Bq was located 1 m away from the camera, and the
imaging time was 20 s and 40 s.

Fig. 13 shows that the reconstructed images obtained by the CNN
method have a higher quality than those obtained by the correlation
analysis method in the presence of only one to two radioactive sources.
However, the reconstructed images are blurred when three to four
radioactive sources exist simultaneously. The values of the pixels cor-
responding to the regions where the sources are located are different
despite the sources have the same activity. These weak signals may be
judged as noise or artifacts when the number of radioactive sources
is unknown. This phenomenon becomes significant as the number
of sources increases because the CNN training data cover only the
case with fewer than four radioactive sources; poor performance is
observed with more than three sources. This problem can be solved
by expanding the training set with a simulation dataset with more
sources. No similar phenomena occurred with the results obtained by
the correlation analysis method; however, as the number of sources
increases, the background noise increases and the image quality de-
teriorates. Therefore, the use of a threshold to artificially distinguish
the region of interest and background to provide guidance for practical
work is necessary.

4.6. Overall testing of trained CNN

Ten thousand simulated datasets, which are different from the
training and validation set, were selected to test the reconstruction
effectiveness of the CNN and the correlation analysis methods. Fig. 14
shows the CNR of the raw reconstruction results obtained by the two
methods and the CNR of the results using the numerical cut-off. The pie
chart indicates the proportion of the cases which CNR is infinite after
using numerical cut-off.

Raw reconstruction results obtained by the CNN method have an
average CNR of 169.08, and more than 58.48% of the values are greater
than 100. The results obtained by the correlation analysis method have

an average CNR of 16.04, and the values are distributed between zero
to thirty. After the numerical cut-off process, the CNR values of the
images obtained by the two methods are greatly improved. For the
CNN method, 61.86% of the ten thousand CNR values are infinite, and
the average of the remaining CNR values is 46.6. For the correlation
analysis method, only 4.69% of the ten thousand CNR values are
infinite, and the average of the remaining CNR values is 49.99. The
CNR of the image obtained by the CNN method is significantly higher
than that obtained by correlation analysis method.

5. Conclusion

This paper presented a CNN-based reconstruction method for coded-
aperture imaging to improve the quality of reconstructed images and
the accuracy of source location recognition with a short imaging time
under low count conditions. A compact gamma camera based on CZT
pixel detector and MURA mask was constructed to study the effec-
tiveness of the CNN method in image reconstruction under various
conditions. Simulation results show that the trained CNN can be used in
the reconstruction process of coded images, and can effectively reduce
image noise. The CNR of the images obtained by the CNN method was
large than that obtained by correlation analysis method. After using
the numerical cut-off, the CNR of the reconstructed images obtained by
the two methods was significantly improved, and the CNN method was
easier to obtain a perfect image without noise. In addition, the CNN
method shows the great potential to remove artifacts caused by non-
parallel rays. However, when the photon flux was low, the CNN method
may fail catastrophically giving completely wrong source position.

When the imaging time is the same, the proposed method can
suppress the noise well and obtain a reconstructed image with better
image quality. At the same time, the time consumption of the CNN
method is mainly concentrated in the training phase; in practical ap-
plication, time-consuming operations such as iteration are not needed.
Thus, the method can be used for real-time measurement and dynamic
monitoring of radioactive sources, and has great application potential
in the field of orphan source search, monitoring of radioactive sources,
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Fig. 14. CNR of reconstructed images using the CNN (top) and the correlation analysis
methods (bottom).

and detecting illicit nuclear material, which require fast and accu-
rate radioactive source positioning capability. Furthermore, the CNN
method is not specific to a certain coded-aperture array and can be
extended to other aperture arrays, such as random array, URA array,
and hexagonal MURA array. For a specific scenario, this method can
accurately model the environment which can improve the performance.

In addition, the CNN method is less effective when multiple sources
are simultaneously present because as the number of sources increases,
all possible cases of sources position increase geometrically, and com-
pletely covering all situations by a training set is difficult. Further
research can be conducted using unsupervised learning methods or
other neural network models.
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