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A B S T R A C T   

Prompt gamma monitoring for the prediction of boron concentration is valuable for the dose calculation of boron 
neutron capture therapy (BNCT). This work proposes to use generative adversarial network (GAN) to predict the 
boron distribution based on Compton camera (CC) imaging quickly and provide a scientific basis for its appli-
cation in BNCT. The BNCT and Compton imaging process was simulated, then the image reconstructed from the 
simulation and the contour of skin from CT are used as input, and the distribution of boron concentration from 
PET data is set as the output to train the network. The structural similarity, peak signal-to-noise ratio, and root 
mean square error of the images generated by the trained network are improved significantly, and the ratio of the 
boron concentration between the tumor area and the normal tissue is improved from 1.55 to 3.85, which is much 
closer to the true value of 3.52. The trained network can optimize the original image within 0.83 s, which is 
much faster than iterative optimization. The proposed method could help to ease the current online monitoring 
problem of boron concentration on a computational level, thereby promoting the clinical development of BNCT 
technology.   

1. Introduction 

Boron neutron capture therapy (BNCT) is a binary radiotherapy 
modality that has unique advantages in the treatment of surface tumors 
and metastatic tumors (Moss, 2014; Sauerwein et al., 2012). Recently, 
accelerator-based BNCT (AB-BNCT) has developed rapidly, and research 
on the therapeutic effect of AB-BNCT has attracted more attention 
(Nakagawa, 2001). The distribution of boron concentration has a great 
influence on the dose delivered to the patient during BNCT treatment, 
which is directly related to the therapeutic effect. Therefore, the boron 
concentration for BNCT needs to be monitored. Many studies have been 
conducted on the boron concentration measurement methods, which 
can be roughly divided into two types: offline and online measurements. 
The offline measurement methods, such as magnetic resonance imaging 
and inductively coupled plasma atomic emission spectrometry 
(ICP-AES) (Wittig et al., 2008; Verbakel et al., 2001; Laakso et al., 2001; 
Raaijmakers et al., 2009), can only measure the boron concentration 
distribution before or after treatment, but cannot monitor the online 

boron concentration. 
Online boron concentration measurement methods have been pro-

posed in recent years. Watabe et al. established a practical method to 
estimate the absolute boron concentration (Watabe et al., 2017), and 
Balcerzyk et al. proved the feasibility of using 18F-boronophenylalanine 
positron emission tomography (PET) to monitor boron concentration 
through experiments (Balcerzyk et al., 2020). The imaging of 0.478 MeV 
prompt γ rays emitted through 10B (n, α)7Li reaction was also proposed 
to be used for boron imaging during BNCT treatment, and the 
single-photon emission computed tomography (SPECT) system used for 
BNCT dose monitoring has been explored. Kobayashi et al. proposed to 
combine the SPECT technique with prompt gamma-ray analysis (PGA) 
to provide an ideal dose estimation system for BNCT (Kobayashi et al., 
2000). The strategy of selecting an optimal detector material for prompt 
gamma (PG) imaging during BNCT with three conclusions has been 
studied to improve the accuracy of dose estimation (Murata et al., 2011; 
Minsky et al., 2009). However, SPECT is limited by the heavy collimator 
and an unsuitable range of detectable energy (i.e., below 300 keV), 
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which can cause problems such as low detection efficiency and poor 
imaging quality when detecting 0.478 MeV PG during BNCT (Fujieda 
et al., 2020). Compared with PET and SPECT, the Compton camera (CC) 
does not require a physical collimator, and the detectable energy range 
is from keV to several MeV. As a result, the reconstructed image of PG 
rays detected by CC can be better than that of SPECT and PET in BNCT 
theoretically. 

CC is a γ-ray detector based on electronic collimation with the ad-
vantages of high imaging efficiency, high sensitivity, and wide field of 
view (Jiang et al., 2015; Muraishi et al., 2020; Nakano et al., 2020; 
Williams, 2016). Some research proposed the use of CC to monitor the 
boron distribution during BNCT treatment, and the feasibility has been 
demonstrated by Monte Carlo simulations. Gong et al. optimized the 
structural design of CC through Monte Carlo simulation to improve 
detection efficiency during BNCT (Gong et al., 2017). Taewoong et al. 
used a multiple-scattering CC to monitor the distribution of PG rays in 
BNCT. Research shows that image quality is important for dose evalu-
ation (Taewoong et al., 2015). However, traditional simple 
back-projection (SBP) and iterative reconstruction algorithms have 
problems with poor image quality or long-time consumption, which is 
not conducive to the application of BNCT online boron concentration 
monitoring. Research on various algorithms has been conducted to 
improve the image reconstruction quality of CCs. Voichita et al. studied 
the influence of system matrix and sensitivity calculation strategies on 
the quality of the reconstructed images (Ortega et al., 2015). Sato et al. 
used super-resolution algorithms to improve the imaging quality of CC, 
but their research is a simulation of simple point sources (Sato et al., 
2020). Basalyga et al. used deep learning to sort the absorption events 
and scattering events of CC, reducing the proportion of error events 
(Basalyga et al., 2021). However, the source conditions of these studies 
are ideal, and whether the algorithms proposed in these studies are 
suitable for BNCT clinical environment remains to be studied. 

The PG imaging method can directly measure the distribution of 
boron dose produced by the reaction of thermal neutrons with 10B, but 
the boron dose only accounts for 60%–80% of the total dose. Direct 
prediction of boron concentration can more effectively assess the total 
dose distribution received by the patient. Generally, because the dis-
tribution of thermal neutron flux in the body is not uniform, it is 
necessary to calculate the boron concentration distribution based on the 
distribution of prompt gamma rays, which needs to be divided by the 
neutron distribution in the body. In fact, for certain BNCT facilities and 
tumor types, the energy spectrum of the accelerator neutron source and 
the irradiation method to the patient are almost the same. Due to the low 
concentration of boron in the tissue, it has almost no effect on the 
neutron flux and is different. And there is little difference in the distri-
bution of hydrogen in different patients, so the distribution of neutrons 
in patients under this condition is similar. This research proposes that 
the neutron flux distribution at different positions can be learned from a 
large number of training sets through generative adversarial network 
(GAN), and then the distribution of boron can be predicted based on the 
input prompt gamma distribution image. In this work, GAN is proposed 
to improve the reconstructed boron distribution image quality of CC 
quickly to predict the boron concentration distribution during BNCT 
treatment. In this study, the PG detection system based on single-layer 
CdZnTe (CZT) CC prototype is simulated to detect 0.478 MeV PG rays 
released during BNCT treatment. The reconstructed images and con-
tours of skin from CT data are set as input to the network for training, 
and the influence of event counts and algorithms on the prediction re-
sults is discussed. 

2. Materials and methods 

2.1. Compton camera configuration 

To simulate the CC imaging of the 0.478 MeV photons released in the 
BNCT process, the model based on the single layer CZT CC prototype 

from Kromek D-matrix has been built, the spatial resolution is set to 
1.72 mm, and the energy resolution is set to 1.30%. The detector system 
consists of five detection modules, each module is arranged at 30◦ in-
tervals and contains four CZT crystals (2 × 2 arrangement), the size of 
each CZT crystal is 2.2 × 2.2 × 1.5 cm3, the number of pixels is 11 × 11, 
and the pixel pitch is 0.31 mm. In the actual BNCT environment, in 
addition to the 478 keV signal, many 511 keV gamma rays are also 
emitted, so the selected detector needs to be able to distinguish photons 
of two energies. To distinguish between two types of photons, the energy 
resolution of the detector should be within 6%@511 keV, and the energy 
resolution of the equipment used in the research can reach 1%@662 
keV, which can meet this requirement. In simulations, the detection 
system is placed 20 cm away from the center of a tumor with a high 
gamma yield in the phantom, which is head-and-neck tumor model 
based on patients’ PET/CT data. The layout of the model is shown in 
Fig. 1. In the early stage, this BNCT model was simulated. Under this 
environment, the share of photons generated by the reaction of neutrons 
and detector materials accounted for less than 2% of all photons 
detected, so the influence of neutrons on CC imaging was not consid-
ered. In this simulation, the forward direction of the neutron beam is 
ideal, and some collimation and shielding treatment may be required in 
actual application. 

After the energy deposition information of the photons inside the CC 
is recorded, the image is reconstructed through the SBP algorithm and 
the origin ensemble with resolution recovery (OE-RR) iterative algo-
rithm (Yao et al., 2019). Details of the SBP algorithm can be found in the 
supplement. 

2.2. Dataset preparation based on Monte Carlo simulation 

In this study, low-count images are optimized through the GAN to 
achieve the goal of predicting the distribution of boron concentration 
with high quality. The distribution of boron concentration in the tissue 
and reconstructed image by the CC with the corresponding contour of 
skin from CT data is the sample pairs of the training set. The contour of 
the skin is the boundary information of the patient’s cross-section ob-
tained from the CT image. This information is input to the GAN for 
training to make the GAN more accurately predict the contour of the 
boron distribution. The actual boron distribution of patients is assumed 
based on PET/CT images, and the PET/CT datasets of head-and-neck 
patients are obtained from the Cancer Imaging Archive (TCIA) 
(https://www.cancerimagingarchive.net/). Due to the limited case data 
available, this study used data from 22 head and neck cancer cases, 14 
cases of head-and-neck cancer (including 4840 images) are used as the 
training set, 2 cases are used as the validation set, and 6 cases are used as 
the test set. Generally, a limited number of training sets are prone to 
overfitting, so data augmentation methods such as horizontal flip, 
random direction rotation and translation of the data set are imple-
mented to increase the randomness of the training set to enhance the 
generalization ability of the model. The preparation process of the 
training set is shown in Fig. 2. 

The BNCT process is simulated using Geant4 (version 10.05) Monte 
Carlo simulation software (Agostinelli et al., 2003). The physicslist used 
in the simulation is FTFP_BERT_HP with corrections made to G4Neu-
tronHPThermalScattering (Geng et al., 2016). In the simulation, an 
accelerator neutron source, designed by Neuboron Ltd, is used and the 
energy spectrum of the neutron source is shown in Fig. 3, which will be 
used in BNCT clinical treatment trials (Taskaev et al., 2021). The 
diameter of the neutron source is 12 cm, and the irradiation direction is 
from top to bottom. The patient tumor model faces downward to receive 
irradiation. For each patient, we extract the PET data of the patients, 
take the distribution of the positron drug as the distribution of the boron 
concentration, and irradiate it with an accelerator neutron source. The 
PET data are preprocessed by normalizing the concentration of positron 
drugs from 1 to 100 (i.e., 1–100 ppm) as the distribution of boron 
concentration. The PET/CT data used in this research is registered. A CT 
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slice has 512 × 512 voxels with the voxel size of 0.98 × 0.98 × 3.27 mm, 
and a PET slice has 128 × 128 voxels with the voxel size of 3.52 × 3.52 
× 3.27 mm. When setting the boron concentration, first match the PET 
image grid with the CT image grid, then convert the CT value to the 

corresponding material number, and convert the PET pixel value to the 
boron concentration. When Geant4 reads the material file, it reads the 
CT material and the boron concentration at the same time, then nor-
malizes the material composition. CC is used to detect the 0.478 MeV 
photons emitted in the BNCT process and reconstruct the PG distribution 
image. For the BNCT process, there are 8 threads in the simulation, and 
the number of each thread incident neutrons is 1 × 108, the position and 
energy of the PG rays are recorded as a phase space file and the reso-
lution of the counting grid is 1 mm. The phase space file is repeatedly 
used as the source with different random seeds in the detection process. 

2.3. GAN structure and evaluation 

The GAN model is used in this study, which is trained and evaluated 
on an NVIDIA TITAN V GPU with 12 GB dedicated RAM, and the 
Compton image reconstruction is performed on the CPU of intel i7- 
9750HQ. GAN was first proposed to be used in the field of image con-
version and performs well in the prediction of medical images (Good-
fellow et al., 2014). The GAN model structure is based on the pix2pix 
structure of GAN, as shown in Fig. 4. 

The generator uses a U-Net network, including four convolutional 
layers and a maximum pooling layer for downsampling, and then 
through the up-sampling layer to restore the image to its original size. 
Compared with ordinary full convolution, U-Net adds skip connection so 
that the corresponding feature maps and the feature maps after decoding 
are combined to retain the pixel-level detail information at different 
resolutions. The objective function of the generator is 

G* = argmin
G

max
D

ℓcGAN(G,D) + λℓL1(G) (1)  

where G and D are the loss of generator and discriminator, respectively. 
The discriminator uses the patchGAN model. The model cuts a picture 
into multiple patches of the same size, and different patches are inde-
pendent of each other. The discriminator judges the true and false of 
each patch, averages the results of all the patches of an image as the final 
output of the discriminator, and then outputs the final judgment result 
through the convolutional layer pooling layer. The mean square error 
between the distribution of the predicted image and the distribution of 
the target image is used as the loss function of the GAN. 

Three indicators structural similarity (SSIM), peak signal-to-noise 
ratio (PSNR), and root mean square error (RMSE) are used to quanti-
tatively evaluate the resulting images. SSIM is a parameter that reflects 
visual similarity, and a value close to 1 means that two images are 
similar to each other. 

SSIM=
(2μxμy + K1)(2σxy + K2)

(μ2
xμ2

μy
+ K1)(σ2

x + σ2
y + K2)

(2)  

Fig. 1. (a) layout of detecting photons generated in BNCT process with CC. (b) CZT CC prototype.  

Fig. 2. Preparation process of the training set.  

Fig. 3. Energy spectrum of the neutron source used in simulation.  
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where μx and μy represent the average value of image x and y, respec-
tively; σ2

x and σ2
y represent the standard deviation of x and y, respec-

tively; σxy is the covariance of x and y; K1 and K2 are constants. PSNR 
represents the image contrast information of the compared images, and 
a larger PSNR represents smaller distortion. RMSE is the root mean 
square of the difference in pixel values between the compared images, 
and a small RMSE indicates a small statistical deviation between the 
image and the reference image. 

PSNR= 10log 10
M2

MSE
(3)  

MSE =
1
n

∑n

i=1
(Voutput

i − Viutput
i ),RMSE =

̅̅̅̅̅̅̅̅̅̅
MSE

√
(4)  

where M is the maximum possible pixel value of the picture, and V is the 
value of the corresponding pixel of the compared images. 

3. Results 

3.1. Influence of physical condition on the reconstructed image 

In the image reconstruction of the CC, the energy of the event and the 
calculated Compton angle are filtered, which can further improve the 
image quality. The result of image spatial resolution with filters of 
different angles and energy when CC is used to image a 0.478 MeV point 
source is shown in Fig. 5. As shown in Fig. 5, when the energy filter 
window is too large or too small, the image quality is relatively poor, and 

the situation is the same as the Compton angle filter window. Therefore, 
the energy filter window from 0.468 MeV to 0.488 MeV and the 
Compton angle filter window from 0◦ to 120◦ are selected. 

In environmental monitoring, a single CC with a smaller size can 
image a wide range of γ sources, but it will encounter problems in close- 
range medical applications. In medical applications, the volume of γ 
source is large, such as a human head and neck case model can be more 
than 15 × 15 cm2. As shown in Fig. 6, compared with 2.2 × 2.2 cm2 

detector sensitive area, when the sensitive area is 8.8 × 8.8 cm2, the 
distortion phenomenon will be significantly reduced. 

3.2. Prediction result of the boron distribution 

As a verification of the predict result of the PG distribution, this study 
compared the predicted result with the actual boron concentration in the 
simulation. Since the boron concentration distribution data is converted 
from the PET data, the boron concentration distribution image is similar 
to the PET image. Fig. 7 shows the input images, the corresponding 
prediction result, and the real images. The images optimized by GAN are 
more similar to the real boron distribution images than the images 
reconstructed with a low number of Compton events. In addition, GAN 
can quickly optimize the original image in 0.83 s. The average ratio of 
the boron concentration between the tumor area and normal tissue of 
the input image is 1.55, and the predicted result is 3.85, which is closer 
to the true value of 3.52. However, as shown in patient #2 of Fig. 7, GAN 
will predict the wrong hot spots. This result occurred because the boron 
concentration of the tumor is low, even close to the normal tissue, then 
the 0.478 MeV PG rays generated in the tumor area are close to the 
normal tissue. Thus, the hot spots that represent the tumor area are not 
prominent enough, which results in inaccurate prediction results. Add-
ing more patient case data of tumors with low boron concentration could 
potentially improve the results. 

3.3. Influence of physical condition on the reconstructed image 

Image quality evaluation parameters SSIM, PSNR, and RMSE are 
used as indicators to evaluate the prediction results of the network. The 
images reconstructed with SBP from different numbers of events are 
used as the input of the network, and the indicators of the GAN pre-
diction results are compared. Fig. 8 shows the GAN prediction results of 
input with different event images. Comparing the initial CC image with 
1,000,000 events and GAN optimized image, the SSIM and PSNR are 
improved from 0.78 to 28.13 to 0.97 and 42.76. On the other hand, after 
the optimization of the GAN, the SSIM of the prediction results of the 
GAN is generally above 0.9, and the PSNR is above 40, which shows that 
the GAN has a significant improvement effect on images. When the 
number of events is large enough (>100,000), the optimized image with 

Fig. 4. GAN model structure used in this work.  

Fig. 5. The spatial resolution of CC with filters of different angles and energy.  
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GAN has no big difference. However, when the reconstructed image of 
1,200,000 events is used as input, the quality of the prediction result is 
reduced overall. 

3.4. Prediction results of input images with different algorithm 

In addition to SBP, the OE-RR iterative algorithm is also commonly 
used in CC image reconstruction (Yao et al., 2019). The OE-RR algorithm 

is an iterative reconstruction algorithm based on Markov chain, which 
has good performance in image quality and reconstruction time. A 
comparison of the prediction results of the OE-RR algorithm of 3 itera-
tions (OE-GAN) with SBP algorithm (SBP-GAN) is shown in Fig. 9, which 
indicates that OE-GAN is more accurate than SBP-GAN for predicting the 
boron distribution in the tumor area. When multiple tumors are present, 
OE-GAN can distinguish them more clearly. However, for the prediction 
of the ratio of boron concentration between tumor and normal tissue, 

Fig. 6. (a) CC image when the detector size is 2.2 × 2.2 cm2. (b) CC image when the detector size is 8.8 × 8.8 cm2. (c) The true distribution of the source of 0.478 
MeV γ rays. 

Fig. 7. GAN prediction results of different patients. The CT contours were lined out with a thin red line. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the Web version of this article.) 

Fig. 8. GAN prediction results of input with different event images: (a) SSIM (b) PSNR.  
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OE-GAN usually causes an overestimation due to the underestimation of 
the boron concentration prediction of normal tissue. As the number of 
iterations increases, the quality of the prediction results improves. As 
shown in Fig. 10, The best effect is achieved when iterating three to four 
times. If the input image has too many iterations, then the boron dis-
tribution prediction of normal tissue is worse than the prediction of 
SBP-GAN and lower than the truth. Moreover, it can be shown in Table 1 
that the time consumption of the iterative algorithm is proportional to 
the number of events; when the number of events is large, the calcula-
tion time will far exceed the prediction time of GAN. 

4. Discussion 

This study proposes to use GAN to predict boron concentration dis-
tribution images of CC imaging to provide a scientific basis for using CC 
to detect online boron concentration distribution in BNCT. Results show 
that the distribution of the boron concentration predicted by GAN is 
more similar to true boron distribution in patients than the results 
reconstructed by SBP or OE-RR algorithms. The results also show the 
great cost-effective advantage of the proposed method. 

The parameters of the CC used in this study are based on the CC 
prototype of Kromek, and the effect of the sensitive area of the detector 
on the imaging results is studied. The conclusion is that the sensitive 
area of detection needs to be adjusted according to the volume and 
location of the tumor. When the area of a single CC is small, multiple 
cameras need to be arranged for simultaneous detection. In addition, in 

the iterative algorithm, the sensitivity matrix can be used to correct this 
error (Williams, 2016), but the sensitivity matrix requires a long time to 
be obtained through simulation or calculation, which is unrealistic in 
clinical applications. 

The GAN can quickly improve the quality of the reconstructed image, 
even for images with a small number of Compton events. Compared with 
SPECT imaging (Fujieda et al., 2020; Yoon et al., 2014), the GAN-based 
CC images can directly predict the distribution of boron concentration 
with high quality. The GAN prediction results of SBP images as input 
with different number of events and OE images as input with different 
number of iterations are compared. As the number of events increases, 
the quality of the results predicted by the GAN improves. However, 
when there are too many events, the quality will decrease, because the 
distortion of the reconstructed SBP image will be more serious as the 
number of events increases. Another result is that the prediction of 
OE-GAN is generally better than SBP-GAN, especially in the tumor area, 
as shown in Fig. 9. However, when the number of iterations is large, the 
image will be concentrated in the hot spot area (Maxim et al., 2016), and 

Fig. 9. SBP and iterative algorithm image with GAN prediction results. The CT contours were lined out with a thin red line. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 10. OE-GAN results of input with different iterations: (a) SSIM (b) RMSE.  

Table 1 
Comparison of OE reconstruction with different number of events and GAN.   

OE-105 

events 
OE-5 × 105 

events 
OE-106 

events 
GAN 
training 

GAN 
prediction 

Time/ 
s 

15.36 50.98 182.32 4380 0.83  

Z. Hou et al.                                                                                                                                                                                                                                     



Applied Radiation and Isotopes 186 (2022) 110302

7

the information in the low activity area will be lost due to over-
convergence. Therefore, the detection time and the number of OE iter-
ations should be appropriately adjusted according to the boron 
distribution. Dedicated research efforts should be used to study this 
topic further. 

The SBP algorithm and the OE-RR algorithm are used to reconstruct 
the initial CC image of 2 interaction events in this study. The algorithm 
can also be used for image reconstruction of multiple interaction events, 
and the image can also be used for GAN training. These events affect the 
reconstruction time of the initial CC images , but are not expected to 
have an impact on the training and prediction time of the GAN. There-
fore, imaging and GAN training using multiple interacting events in 
future studies may effectively improve the results. 

In BNCT, CC does not have high-performance imaging results yet, 
and using GAN may improve the imaging quality. As the time- 
consumption of the GAN prediction is within seconds, the online im-
aging might be able to be realized with this technique. Of course, more 
solid experiment studies should be performed in the following studies. 
However, this study still provides some insights for the subsequent 
clinical translation of the CC in the field of medical imaging. Further-
more, due to the limitation of the development level of PG detection 
equipment, the Kromek detector may reach saturation under the high 
flux of neutrons during BNCT, which will seriously affect the detection 
performance for 0.478 MeV prompt gamma. Winkler et al. proposed that 
patients could be imaged at low neutron flux (e.g., 1–5% treatment flux) 
using a PG detection system such as SPECT prior to actual therapeutic 
irradiation (Winkler et al., 2015). Therefore, the spatiotemporal devel-
opment of boron distribution in patients can be monitored by CC at low 
neutron flux to determine the optimal time to initiate therapy in prac-
tical applications. Moreover, the detection efficiency of the CC is supe-
rior, and it is expected to be used for real-time boron concentration 
monitoring in the BNCT process in the future. 

This study also has limitations. First, the boron concentration dis-
tribution assumed in the article is based on the distribution of positron 
drugs in PET data rather than boroncontaining compounds. The pre-
dicted boron concentration is relative boron concentration rather than 
absolute boron concentration. In future studies, the boron concentration 
can be more accurately quantified by adding a reference of known boron 
concentration during the simulation. Second, the head and neck tumors 
used in this work are located close to the body surface with a simple 
shape, where the neutron flux near the tumor is high, and the yield of 
0.478 MeV gamma rays is much higher than that of normal tissue. 
Therefore, the network model trained with head and neck tumors may 
not be suitable for the detection of tumors in other parts such as glioma. 

5. Conclusion 

This work proposes to use GAN to quickly improve the boron dis-
tribution image quality of CC imaging for BNCT boron distribution im-
aging. The results show that this method can effectively improve the 
quality of CC images. With the use of this method, the ratio of the boron 
concentration between the tumor area and the normal tissue is improved 
from 1.55 to 3.85, which is closer to the true value of 3.52. The image 
optimized by SSIM can reach 0.95, which is better than 0.80 of SBP. In 
addition, compared with iterative methods, GAN-based image optimi-
zation takes less time, optimizing the original image within 0.83 s. In 
this work, the feasibility of a GAN-based online monitoring method for 
BNCT treatment is confirmed. Therefore, the proposed method could 
help to ease the current online monitoring problem of boron concen-
tration on a computational level, thereby promoting the clinical devel-
opment of BNCT technology. 
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