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Because of their superior characteristics, carbonaceous materials, which are still 
at their early stage of development, have garnered significant interest. Because 
of their low atomic number, carbonaceous orthopedic implants possess radiation 
properties similar to biological tissues and, therefore, they are more suitable to 
patients in need of radiotherapy. The effects of stainless steel, titanium, and carbon 
plates on radiation dose distributions were investigated in this work using Monte 
Carlo simulations and TLD measurements for 6 MV photon beams. It is found 
that carbon plates will neither increase the incident surface dose, nor lead to the 
decrease of exit surface dose (the effect of a second build-up). Carbon fiber ortho-
pedic implants have a good prospect for radiotherapy patients because they have 
minimal perturbation effects on the radiotherapy dose distribution.

PACS number: 87.55.K-,87.55.Gh, 87.55.ne
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I.	 Introduction

Traditional orthopedic implant materials are usually stainless steel or titanium whose atomic 
numbers are larger than those of normal tissues in bodies. In radiotherapy, these metal implants 
significantly differ from human normal tissue in density, and hence will perturb the radiation 
dose distribution in the body.(1) In contrast, carbonaceous materials have low atomic numbers, 
good biocompatibility, chemical stability, good mechanical properties, and modulus of elasticity 
similar to human bones.(2-5) The availability of carbon implants will solve the problem of dose 
perturbation for traditional metal implants. This is good news for those cancer patients who 
may receive radiotherapy treatments after implanting orthopedic implants.(6) 

There are strengths and shortcomings for all artificial implants. For example, metals have 
the disadvantages of electrolysis, fatigue, wear, corrosion, loosening, and bone absorption. 
Polymer materials have the problems of aging, poor creep resistance, and toxic reactions. 
Ceramic materials have no plasticity, and are crisp and easy to break. In recent years, carbo-
naceous materials have garnered significant medical interest, and are being investigated for 
clinical applications because of their good biological and chemical stability, good mechanical 
properties, and modulus of elasticity similar to human bone. The carbon fiber implants investi-
gated in this work are carbon–carbon composite materials rather than traditional carbon–resin 
composite materials, because carbon–carbon composite materials are not toxic to normal tis-
sues.(7) However, carbon fiber implants are not as good as metals in terms of malleability and 
impact toughness. Under great pressure, the carbon fiber may fracture and the implants may 
rupture. Meister et al.(8) and Pryor et al.(9) found that with wear and tear the tissues surround-
ing carbonaceous implants could be dyed black, and the surrounding cells may contain carbon 
particles. These shortcomings may be solved by, for example, wrapping a layer of metal and 
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thick carbon biological capacitive materials around the carbon fiber implants to prevent the 
release of carbon particles.(7,10)

In this work, we investigated the perturbation effects of stainless steel implants, titanium 
implants, and carbon fiber implants on radiotherapy dose distributions. We computed dose 
distributions using commercial treatment planning systems, and performed Monte Carlo 
simulations and measurements for stainless steel, titanium alloy, and carbon materials using 
6 MV photon beams. The Monte Carlo method is the most accurate method to calculate ra-
diation dose distributions in the body(11,12) that cannot be measured using currently available  
radiation detectors.

 
II.	 Materials and Methods

A.1  Orthopedic implants investigated
We investigated three types of orthopedic implants in this work (Fig. 1). Stainless steel implants 
consist of iron, chromium, nickel, and a small amount of nitrogen, manganese, silicon, sulfur, 
and molybdenum. Stainless steel implants have good mechanical properties and are easily 
corroded in the body, so they are often used as temporary implants. Titanium alloy implants 
contain aluminum (Al) and vanadium (V) with good corrosion resistance. The carbon fiber 
implants were made of three-dimensional PAN-based carbon–carbon composite materials 
(The College of Material Science and Technology, Nanjing University of Aeronautics and 
Astronautics, Nanjing, China). These three types of implants are 0.4 cm in thickness, 1.3, 1.5, 
and 1.5 cm in width, and 12.5, 14, and 14 cm in length, respectively. Their mass densities are 
7.91, 4.54, and 1.7 g/cm3, respectively.

A.2  Monte Carlo simulations 
In this work, the BEAMnrc Monte Carlo code was used to simulate the 6 MV photon beams 
of a Siemens PRIMUS linear accelerator (Siemens AG, Erlangen, Germany). The Monte Carlo 
simulation source was the No. 0 source (a parallel beam from the front). The radius of the source 
was 0.5 mm. The total number of source particles simulated was 1 × 109 to ensure that the 1-σ 
statistical uncertainty of the dose distributions was less than 2%. BEAMnrc generated phase 

Fig. 1.  Orthopedic implants of different materials (from top to bottom: stainless steel, titanium alloy, and carbon fiber).
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space data files (egsphsp), which were 2–4 GB in size. The DOSXYZnrc Monte Carlo code 
was used for the dose calculation. The field size was 10 cm × 10 cm and 3 cm × 3 cm, respec-
tively, defined at a source-to-surface distance (SSD) of 100 cm. The implants were centered at 
5 cm depth in a 30 cm × 30 cm × 50 cm water phantom. The cutoff energy was 0.7 MeV (total 
energy) for electron transport and 0.01 MeV (kinetic energy) for photon transport, in both ac-
celerator simulation and phantom dose calculation. The maximum electron step length was set 
to 5 cm, and the computational grid size was 0.1 cm × 0.1 cm × 0.1 cm (Fig. 2). The implant 
geometries used for the Monte Carlo simulation were represented by the three-dimensional 
rectilinear geometry of the simulation phantom based on the actual implants in Fig. 1.

A.3  TLD measurements in a water phantom 
TLD measurements were performed in water for 6 MV photon beams with a 10 cm × 10 cm 
field defined at 100 cm SSD. To ensure the accuracy of the measurements, TLD chips were 
prescreened by repeated radiation at 200–500 cGy and only those chips showing small measure-
ment uncertainties (within 4%) were selected. To compare the dose changes with and without 
implants, three TLD chips were placed at the same locations above and below the implants 
and irradiated with 200 monitor units (MU). The experiments were repeated three times and 
the results were analyzed. 

A.4  X-ray and CT imaging of implants implanted in animals 
The stainless steel, titanium, and carbon fiber implants were implanted in the same thigh of 
a pig, and fixed with carbon fiber screws. The whole animal was scanned on a Nucletron 
SIMULIX HQ simulator (Nucletron, Veenendaal, The Netherlands) and a Siemens SOMATOM  
CT scanner. 

A.5  Radiotherapy treatments of animals with implants
The pig thigh with different implants was treated by 6 MV photon beams. The CMS XiO (ver-
sion 4.40) (Computerized Medical System (CMS), St. Louis, MO) treatment planning system 
was used to produce treatment plans with different beam setups. The superposition convolution 
algorithm was used for the dose calculation. The electron-density values were corrected properly 
in the treatment planning system calculation for steel and titanium.

Fig. 2.  The experimental setup for the implant irradiation.
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Four treatment plans were designed: (1) a single-field treatment (gantry angle: 0°, 200 MU), 
(2) two opposed fields (gantry angle: 0° and 180°, respectively, 100 MU/beam), (3) three fields 
(gantry angle: 0°, 120° and 240°, respectively, 66.7 MU/beam), and (4) three-field intensity-
modulated radiation therapy (IMRT), in which the same gantry angles were used as in plan (3). 
In all cases, the target was the bone, and the isocenter was set at the center of the target. The 
source-to-axis distance (SAD) was 100 cm. For the IMRT plan, the doses were normalized to 
ensure 95% of the target volume receiving the prescribe dose of 200 cGy. 

 
III.	Res ults 

A.1  Monte Carlo simulation results
For a 10 cm × 10 cm photon field, the doses at the interface immediately above the implants 
increased by 20.1%, 16.7%, and 1.2% for the stainless steel implant, the titanium implant, 
and the carbon implant, respectively, compared to that in the water phantom in absence of the 
implants (Fig. 3). This dose increase can be explained by the enhanced backscattering from 
the high-Z materials. The maximum dose difference was reduced to 1.9% at a point 0.3 cm 
above the implant and less than 1% at a point 0.4 cm above the implant since the backscattered 
electrons have very limited range.

The doses at the interface immediately below the implant decreased by 9.0%, 6.9%, and 
-2.2% for the stainless steel implant, the titanium implant, and the carbon implant, respec-
tively. The dose difference was reduced to less than 1.5% at a point 1.2 cm below the stainless 
steel implant and at a point 0.9 cm below the titanium implant. This dose perturbation can be 
explained by the reduced electron fluence from the high-Z materials compared to that from 
water (in absence of the metal implants). The second build-up effect was significantly below 
the stainless steel implant and the titanium implant, while a slight dose increase was observed 
below the carbonaceous implant.

For a 3 cm × 3 cm photon field, the dose increase at the interface immediately above the 
implants was 19.9%, 16.5%, and -0.3% for the stainless steel implant, the titanium implant, 
and the carbon implant, respectively. The doses at the interface immediately below the implant 
decreased by 9.2%, 8.2%, and -1.4% for the stainless steel implant, the titanium implant, and 
the carbon implant, respectively — which were not significantly different from those for the 
10 cm × 10 cm photon field. 

A.2  TLD measurement results in water
For a 10 cm × 10 cm photon field, the dose measured by the TLD immediately above the implant 
was 20.1%, 15.5%, and 0.1% higher for stainless steel, titanium plate, and carbon implants, 
respectively, than that without the implant, while the doses below the implant decreased by 
8.5%, 7.8%, and -2.4%, respectively. The measurement results were consistent with the Monte 

Fig. 3.  Percent depth dose curves without an implant and with different implants: (A) a stainless steel implant, (B) a 
titanium implant, and (C) a carbon fiber implant.
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Carlo simulation results within the combined measurement and calculation uncertainties of 
about 3%.

A.3  Comparison of X-ray radiographs and CT images of different implants  
The X-ray radiographs of the three implants are shown in Fig. 4. The stainless steel and titanium 
alloy implants are clearly seen on the radiographs demonstrating their significant attenuation 
effects compared to the carbon fiber implant. On the CT image, the stainless steel implant ex-
hibits more significant striking artifacts in the surrounding tissues than the titanium implant. 
The carbon fiber implant does not influence the CT image quality, as shown in Fig. 5.

A.4  Comparison of radiotherapy treatment plans for different implants 
The isodose distributions of a single 6 MV photon field for different implants are shown in Fig. 5. 
It is evident that the stainless steel implant has the greatest impact on the isodose distributions, 
followed by the titanium implant, and that the carbon fiber implant has hardly any influence. 
The differences in the external contours due to different implant insertions caused some ripples 
on the isodose lines, but significant dose perturbations occurred after the beam passing through 
the metal implants, demonstrating more photon attenuation by the stainless steel implant than 
by the titanium implant. The isodose distributions were consistent before and after the carbon 
fiber implantation. The results are in accordance with the Monte Carlo simulation results.

The isodose distributions of two opposed 6 MV photon fields for different implants are shown 
in Fig. 6. The greatest dose perturbation resulted from the stainless steel implant; the 170 cGy 
isodose line for the stainless steel implant differed significantly from that for the carbon fiber 
implant. The titanium implant also showed some effects on the isodose distributions

Fig. 4.  X-ray radiographs of a stainless steel implant (A), a titanium implant (B), and a carbon implant (C).

Fig. 5.  CT images of a stainless steel implant (A), a titanium implant (B), and a carbon implant (C) showing significant 
CT artifacts due to the metal implants. The isodose lines represent 200 cGy, 180 cGy, 160 cGy, 140 cGy, 120 cGy, and 
100 cGy for a 6 MV photon beam.
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Figure 7 shows the treatment plans for different implants irradiated by three 6 MV photon 
fields incident at 0°, 120°, and 240° gantry angles. The effects of the metal implants were much 
reduced, since only one beam had gone through the metal implants.

Figure 8 shows the isodose distributions for different implants irradiated by three intensity-
modulated 6 MV photon fields. Similar to the results in Fig. 7, only small dose perturbations 
were observed for metal implants compared to the carbon fiber implant. The MU ratio for the 
stainless steel implant, the titanium implant, and the carbon fiber implant (to achieve the same 
target dose of 200 cGy) was 1.11:1.04:1.00.

                           
IV.	D ISCUSSION 

In this study, we evaluated the dosimetric properties of carbon fiber implants by comparison 
with the dosimetric properties of stainless steel and titanium implants. It is shown by X-ray 
radiographs and CT images that metal implants can cause more X-ray attenuation and CT 
imaging artifacts that can further affect the dose calculation either using commercial treatment 

Fig. 6.  Isodose distributions of two opposed 6 MV photon fields for a stainless steel implant (A), a titanium implant (B), 
and a carbon implant (C). The isodose lines represent 180 cGy, 170 cGy, 160 cGy, 150 cGy, 140 cGy, and 130 cGy for 
a 6 MV photon beam.

Fig. 7.  Treatment plans for different implants irradiated by three 6 MV photon fields incident at 0°, 120°, and 240° 
gantry angles. The effects of the metal implants were much reduced, since only one beam had gone through the metal 
implants.

Fig. 8.  Isodose distributions of three intensity-modulated 6 MV photon fields incident at 0°, 120°, and 240° gantry angles 
for a stainless steel implant (A), a titanium implant (B), and a carbon implant (C). The isodose lines represent 110%, 100%, 
90%, 80%, 70%, 60%, and 50% of the prescription dose of 200 cGy.
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planning systems or using Monte Carlo simulations. For 6 MV photon beams, the dose pertur-
bation effects are more severe for a stainless steel implant than for a titanium implant, while a 
carbon fiber implant has almost no effect on the dose distribution. Significant differences in dose 
between the planning system and Monte Carlo in the high-Z region were observed, possibly 
due to the loss of electron equilibrium.(13) In the present study, the superposition convolution 
results were consistent with the Monte Carlo results; significant dose perturbations occurred 
in both in areas near the metal implants. The TLD measurements confirmed the Monte Carlo 
calculation results. The radiation dose impact of the implants was basically the same for 6 MV 
photon beams with field sizes between 3 cm × 3 cm and 10 cm × 10 cm. Greatest dose increase 
in front of the implant and greatest dose reduction behind the implant were observed when a 
single 6 MV photon beam passed through the stainless steel implant. These perturbation effects 
were much reduced for two opposed fields and further reduced for three fields when more beams 
avoided the implants. Therefore, multifield treatments are more advantageous than single or 
opposed-field treatments for metal implants. However, conformal avoidance may be limited for 
some target locations. Intensity-modulated radiation therapy makes it possible to obtain a better 
dose distribution after the implantation of metal implants at the cost of increased MUs, which 
will increase the dose to the normal tissues and also prolong the treatment time. Carbon fiber 
implants, in comparison, can be a better alternative for patients who will receive radiotherapy 
after their orthopedic implantation. 

In this work, we only investigated the dose perturbation effects of the three orthopedic im-
plants using 6 MV photon beams. Both the forward and backscattered dose perturbation effects 
of high-Z materials are greater for higher photon energies that are used in radiation therapy(14) 
and, therefore, they are less ideal as implant materials for these high-energy photon beams as 
compared to carbonaceous materials. Furthermore, photon energies higher than 10 MV are not 
often used in IMRT treatments due to their neutron components that can be more detrimental to 
younger radiotherapy patients. Therefore, the advantages of carbon fiber implants over metal 
implants would be greater for conventional radiotherapy treatments with fewer high-energy 
photon beams.

 
V.	C onclusions

In summary, carbon fiber implants have minimal dose perturbation effects compared to com-
monly-used metal implants, and are more suitable for radiotherapy patients with orthopedic 
implants, in terms of clinical dosimetry.
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