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Abstract
Background: The Compton camera (CC) has great potential in nuclear
medicine imaging due to the high detection efficiency and the ability to simulta-
neously detect multi-energy radioactive sources.However, the finite resolution of
the detectors will degrade the images that the real-world CC can obtain.Besides,
the CC sometimes can be limited by the detection efficiency, leading to diffi-
culty in using sparse projection data to realize high-resolution reconstruction
with short-time measurement, which limits its clinical application for real-time or
rapid radiopharmaceutical imaging.
Purpose: To overcome the difficulty and promote the usage of the CC
in radiopharmaceutical imaging, we present a deep learning (DL)–based
CC reconstruction method to realize rapid and high-resolution imaging with
short-time measurement.
Methods: We developed a DL–based algorithm MCBP-CCnet via Monte Carlo
sampling–based back projection and a dedicated convolutional neural net-
work, called CC-Net, to realize the rapid and high-resolution reconstruction with
sparse projection data. A CC prototype based on a single three-dimensional
position-sensitive CdZnTe (3D-CZT) detector was used to demonstrate the
feasibility of our proposed method. The simulations and experiments of radio-
pharmaceutical imaging used the 3D-CZT CC and [18F]NaF. A 3D-printing
mouse phantom was also further used to evaluate the performance of the
proposed method in animal molecular imaging.
Results: The simulation and experimental results showed that the proposed
method could realize the images reconstruction within 5 s for list-mode pro-
jection data and realized a rapid reconstruction within 35 s for experimental
radiopharmaceutical imaging based on the 3D-printing mouse phantom,as well
as realized the high-resolution imaging with an accuracy of within 0.78 mm in
terms of the sparse projection data that only contained hundreds of events.
Besides, the deviations between the reconstructed radiative activities and the
exact values were less than 1.51%.
Conclusion: The results demonstrated that the proposed method could
realize the rapid and high-resolution CC reconstruction with sparse
projection data obtained by the 3D-CZT CC and realize the high-resolution
radiopharmaceutical imaging. The study in this paper also demonstrated
the potential and feasibility of future applications of a 3D-CZT CC for
real-time high-resolution radiopharmaceutical imaging with short-time
measurement.

Med Phys. 2022;1–11. wileyonlinelibrary.com/journal/mp © 2022 American Association of Physicists in Medicine. 1

mailto:xiaoysh@mail.tsinghua.edu.cn
https://wileyonlinelibrary.com/journal/mp
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fmp.15898&domain=pdf&date_stamp=2022-09-19


2 DEEP LEARNING-BASED 3D-CZT CC IMAGING

KEYWORDS
3D-CZT, Compton camera, deep learning, nuclear medical imaging, radiopharmaceutical imaging

1 INTRODUCTION

Radiopharmaceutical imaging gets medical images with
the in vivo drugs labeled with specific nuclides. It
can provide an accurate diagnosis, enhanced visu-
alization, and more effective personalized treatment
for a range of diseases by obtaining the distribution
of radiopharmaceuticals in the regions of interest.1

Currently, existing medical imaging techniques, single-
photon emission–computed tomography (SPECT), and
positron emission tomography (PET) have played
an important role in radiopharmaceutical imaging.2

However, the energy ranges of gamma rays that
they can detect are limited to 511 keV (PET) or
other monoenergetic photons (SPECT).3 The Comp-
ton camera (CC) based on electronic collimation,
which has the advantages of detecting wide energy
ranges of gamma-rays and simultaneously imaging
multiple radioactive sources, can overcome the short-
comings of the former and be used in medical
imaging.4

In recent years,the optimization of designs and recon-
struction algorithms of CCs have been investigated by
many groups.5–21 Two main categories of CC are devel-
oped with different structures (i.e., single-layer CC and
multilayered CC).7–9 Lots of clinical medical imaging
experiments have been carried out with the multilayered
CC.10–12 Multilayered CC utilizes the gamma events
interacting with different stages of detectors to obtain
the inverted spatial Compton cones that have longer
Compton levers (i.e., the distance between the scatter-
ing positions and the absorbed positions). The longer
Compton levers of multilayered CCs can reduce the
effect on the reconstruction accuracy caused by the
intrinsic spatial resolution of the detectors. Besides, the
events of incomplete energetic deposition can be cor-
rected and used in the reconstruction. However, the
multilayered CCs usually are bulkier and more expen-
sive, and most of their reconstruction quality is limited
by the inherent energy resolution and spatial resolution
due to the scintillation crystals without deep interaction
information.13–15 In contrast, three-dimensional position-
sensitive CdZnTe (3D-CZT) semiconductor CC with a
compact structure,which has the advantages of a larger
field of view, high energy resolution, and spatial resolu-
tion, has been developed in recent years.16,17 Although
the shorter Compton levers have a larger effect on the
imaging deviation caused by the measurement errors
of the spatial interaction positions and the energies
deposited, the 3D-CZT CC with portability and large
field of view has unique advantages in nuclear medicine
imaging.

The high-resolution reconstruction algorithms of CCs
for nuclear medicine imaging mainly contain the list-
mode maximum likelihood expectation maximization
with point spread function (LM–MLEM–PSF) and the
origin ensemble with resolution recovery (OE–RR).18–22

Several groups have demonstrated their performance
in nuclear medicine imaging through simulations and
experiments. However, the quality of their reconstructed
images in clinical experiments was limited by the
accuracy of the measured projection data via actual
detectors and effective event statistics. For the radio-
pharmaceutical imaging with a 3D-CZT CC, the existing
reconstruction algorithms cannot achieve rapid and
high-resolution reconstruction in the case of sparse pro-
jection data due to the low detection efficiency and short
measurement time.

In the past decade, deep learning (DL) has been
widely used in the fields, such as classification, denois-
ing, and segmentation.23–25 Some recent studies have
shown that for CC imaging, DL can generate images
close to the truth distribution from low-statistics images,
providing new methods for the fast reconstruction of
CCs.26 Besides, DL can give a better estimate of the
projection data used for classical algorithms to make a
better reconstruction.27 Inspired by these exciting works,
we present a novel DL-based CC algorithm via Monte
Carlo sampling–based back projection, and a dedicated
neural network designed for CC reconstruction called
CC-Net, to promote the nuclear medicine application
of 3D-CZT CCs and realize the rapid high-resolution
CC reconstruction with sparse projection data. In this
paper, we first propose the CC reconstruction algo-
rithm via Monte Carlo sampling–based back projection
and CC-Net. Then we introduce the single 3D-CZT
CC and 3D-printing mouse phantom, as well as the
simulations and experiments scenes. Finally, we eval-
uate the performance of the proposed method and
demonstrate the potential and feasibility of future appli-
cations of a 3D-CZT CC for real-time high-resolution
radiopharmaceutical imaging with the proposed method.

2 MATERIALS AND METHODS

2.1 Monte Carlo sampling-based back
projection and CC-Net

A Monte Carlo sampling–based back projection (MCBP)
proposed in the previous study was used for the pre-
processing of the sparse projection data.28 The MCBP
transformed the Compton inverted cones into stan-
dard quadratic equations, transformed the algebraic
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calculation of the 3D points on the conical surface to
two-dimensional random number sampling, and finally
realized the 3D fast back projection only by twice inde-
pendent random sampling. In this study, the resolution
recovery process was further optimized and incorpo-
rated into the inverted conical calculation based on the
Monte Carlo method. That is, the two interaction posi-
tions were randomly corrected with independent uniform
distributions,and the energies deposited were randomly
corrected with two independent Gaussian distributions.
The process of corrected MCBP was given by

fMCBP =
∑

k

{
𝛿
(
vj, ei

) |vj ∈ Ci, i ∈ N
}

(1)

where the k was the sampling times, the vj was the jth
voxel in the field of views in the reconstruction, and the
ei was the ith event with total number N. Its correspond-
ing inversed Compton cones Ci with resolution recovery
could be obtained by

Ci =
{

(x, y, z) |𝜆1x2
c + 𝜆2y2

c + 𝜆3z2
c = 0, 𝜆i ∈ fi(L′1, L′2, E′

1, E′
2

}

, i = 1, 2 or 3} (2)

where the L′1 and L′2 were the corrected two interaction
locations based on the uniform distribution determined
by the measured values and the spatial resolution of
detectors, and the E′

1 and E′
2 were the corrected two

energies deposited based on the Gaussian distribution
determined by the measured values and the energy
resolution of detectors and the Doppler broadening
effect.

Inspired by U-Net for segmentation,25 we proposed
a CC-Net for rapid CC reconstruction with resolution
recovery based on the pre–back projection of (1). The
architecture of CC-Net is shown in Figure 1.The CC-Net
took the reconstructed image with the size 128 × 128
obtained by MCBP as input and generated the denoised
and recovered image matrix with the same size as out-
put. To better train the CC-Net, we normalized all the
inputs and labels. The CC-Net consisted of the input
convolution layers, a down-sampling encoder, an up-
sampling decoder, and the output convolution layer. The
hyperparameters in the proposed CC-Net are given in
Table 1.

2.2 Compton camera and mouse
phantom

In this study, we used a 3D-CZT CC produced by
Kromek, which was composed of a common planar
cathode and 11 × 11 pixelated anode pads and a CZT
crystal with the size of 22 × 22 × 15 mm3. The 3D
coordinates of Compton events could be obtained from
the horizontal spatial location of pixelating anode pads

and the depth calculated by the time difference between
the signals of the cathode and the anode.29 The spatial
resolution of the 3D-CZT CC was 1 mm for the lateral
position as well as the depth, and the energy resolution
at 511 keV was about 1.5% (Figure 2).

The cryosection images of a 28-g nude male mouse
and coregistered CT were used to generate a mouse
phantom.2,3 As shown in Figure 2, the Butanediol
dimethacrylate (C12H18O4, ρ: 1.3 g/cm3)-based 3D-
printing mouse phantom contained five areas to place
the radiopharmaceutical (i.e., brain, heart, two kidneys,
and bladder).

2.3 Simulations

The simulation was based on the Geant4.p.10.03. The
simulated CC referred to the built 3D-CZT CC and was
modeled with the same spatial and energy resolution
and the same size. Two simulations were implemented
to train the CC-Net together. The field of view in the
reconstructions was the squares with a side length of
10 cm. In addition, their two-dimensional pixelate array
was 128 × 128.

2.3.1 Radiopharmaceuticals were
randomly and irregularly distributed in organs

The radiopharmaceutical, [18F]NaF, was assumed to be
randomly injected into the brain, heart, kidney, and blad-
der at different doses. Thus, the radiative sources with
the energy at 511 keV and different distributions in these
five characteristic areas were randomly generated in
each simulation. We also stored their exact spatial dis-
tributions of sources as labels in training and used the
primary reconstructions based on MCBP as the inputs
for the CC-Net. In particular, the simulated radiation
source distribution in these five different parts was com-
pletely random, with different geometry and intensity,
which was not limited by the shape of the five organs;so
it covered all possible radiation source distribution char-
acteristics in practical situations. The simulations were
implemented 24000 times.A total of 19200 groups were
used as training sets, and the other 4800 groups were
used as testing sets.

2.3.2 Radiopharmaceuticals were
randomly and irregularly distributed in organs
and with metastasis

Gaussian-broadened diffused point-like sources with
different numbers were additionally randomly distributed
in the field of view in simulations based on the 3D-
printing mouse phantom earlier. The maximum number
of sources was five, and the numbers of sources were
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F IGURE 1 The architecture of CC-Net

TABLE 1 The hyperparameters of the proposed CC-Net

Patch size 128 × 128

Convolution layer filter size 3 × 3

Up-sampling layer filter size 2 × 2

Learning rate range [1e−4, 1e−5]

Size of mini-batch 4

randomly chosen. Besides, the standard errors of their
Gaussian distribution were randomly obtained from 0.7
to 4.2 mm, and the emitted gamma-rays from the
sources were 511 keV. The mixed sources were used
to simulate the possible metastasis of radiopharma-

F IGURE 2 The photograph and schematic diagram of the
internal structure of the three-dimensional (3D)-printing mouse
phantom

ceuticals in the mouse phantom. The simulations were
implemented 12000 times. A total of 9600 groups were
used as training sets, and the other 2400 groups were
used as testing sets.

The interaction positions in the list-mode projection
data obtained in simulations were moved to the pixel
center of the detector unit, and the deposited energies
were randomly corrected with a Gaussian distribution
determined by the energy resolution of the CC.Besides,
the information of projection data was randomly inverted
(i.e., exchanged the information of the scattering point
with that of the absorption point in the list-mode data),
to simulate the projection data obtained from the real-
world 3D-CZT CC.All the training images were randomly
rotated or flipped before being inputted into the CC-Net.

2.4 Experiments

In the experiments, [18F]NaF solution, provided by
JYAMS PET Research and Development Limited, was
placed in a sealed capsule that was located in the brain
and kidneys, and bladder with ∼14 and ∼7 and ∼7 μCi,
respectively. The phantom was placed about 10 cm
above the detector, and the center of the CZT crystal
was basically aligned with the phantom. The experi-
ments detected the presence of radiopharmaceuticals
in the brain and kidneys and bladder separately or at the
same time. Each group of experiments was measured
for 1 h,and the detection data were output every 15 min.

All these list-mode projection data were randomly
divided into independent event sets according to the
equivalent photon events detected in 30 s. Then all the
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experimental datasets were reconstructed by the MCBP
and imported into the trained CC-Net via the simulations
to obtain the reconstruction results directly.

2.5 Training strategies

The mean square error (MSE) was used as the loss
function for training CC-Net:

L = MSE =
1

M × K
‖f − f̂ 2

2 ‖ (3)

where the f̂ was the predicted image, and the f was
the corresponding label. The M and K were the num-
ber of row and column pixels, respectively. An Adam
optimizer30 was used for training with 𝛽1 = 0.9, 𝛽2 =

0.999, and ∈ = 10−8 . The batch size was 4, and we
trained 30 epochs in total. The learning rate was set to
10−4 and decayed to 10−5 in 20 epochs.

The training was performed on PyTorch framework
with Python language.31 In addition, the training took
∼4 h on one NVIDIA TITAN RTX GPU card.

2.6 Evaluation method

Three metrics were used to evaluate the reconstructed
image quality and compared with the exact values in
this study. They were MSE that is given by Equation
(3), peak signal-to-noise ratio (PSNR), and structural
similarity index metric (SSIM):

PSNR = 10log10

max
(
f, f̂

)
MSE

(4)

SSIM =

(
2𝜇f̂𝜇f + c1

) (
2𝜎f̂ ,f + c2

)
(
𝜇2

f̂
+ 𝜇2

f + c1

)(
𝜎2

f̂
+ 𝜎2

f + c2

) (5)

where the max(f, f̂ ) denoted the maximum possible pixel
value,which was 1 in all experiments.𝜇f̂ and 𝜇f were the
mean value of f̂ and f . 𝜎f̂ and 𝜎f were the variance of f̂
and f . 𝜎f̂ ,f was the covariance of f̂ and f , and constant
c1 = 0.012 , c2 = 0.032 .

In addition, two iterative CC reconstruction algorithms
were used to compare with the proposed DL-based
algorithm. One was the LM–MLEM–PSF algorithm, a
kind of LM–MLEM algorithm with the pre-estimated PSF
to recover the resolutions18 (abbreviated as MLEM-PSF
as follows).The other one was the subset-driven OE–RR
(SD–OE–RR) algorithm, a recently proposed OE–RR
algorithm with a faster iterative speed29 (abbreviated as
OE–RR as follows).

3 RESULTS

3.1 Radiopharmaceutical imaging
based on simulated 3D-printing mouse
phantom

As shown in Figure 3, when the projection data was
sparse (i.e., only hundreds of effective events), due to
the spatial resolution of the detectors and the low statis-
tics, the results obtained by the MCBP could not obtain
the roughly accurate distributions of the radiopharma-
ceuticals especially for the sources with a short distance.
Although the iterative reconstruction algorithms with
resolution recovery could restore the degraded recon-
structed image to a certain extent, the sparse projection
data and the lack of sufficient statistical properties could
cause the loss of lower activity radioactive sources
or the deviations in the reconstruction. The proposed
method could recover the degraded images and repro-
duce the exact radiopharmaceutical distribution, even
if there were randomly existed in the phantom without
any regular distribution. As Figure 4 shown, the profiles
obtained by the proposed method were almost identical
to the exact corresponding profiles of the value, and the
accuracy was within 0.5 mm. In each group of recon-
struction results in Figure 4, two contours with as many
features as possible at the position of the red dotted
line are selected to evaluate the reconstruction accuracy
of the proposed method. Besides, the profiles contain-
ing less obvious but important features, such as the
radiative distribution in the heart of the mouse phantom
in Group 3 in Figure 3, were also selected. As shown
in Table 2, the proposed method could obtain better
reconstruction images compared to the reconstruc-
tions obtained by the MCBP and LM–MLEM–PSF and
SD–OE–RR.

3.2 Radiopharmaceutical imaging
simulations with random metastasis

As shown in Figures 5 and 6, for the more complex
distributions of the radiopharmaceuticals, the proposed
method could reconstruct most of the exact distribu-
tions, although the MCBP-based reconstruction results
for input to CC-Net have been severely distorted due to
sparse projection data (about 400 events). In contrast,
the LM–MLEM–PSF and SD–OE–RR algorithms could
not reconstruct the complex distributions due to the lack
of enough source information obtained from the sparse
and nonideal projection data. As shown in Table 3 , the
proposed method could obtain better reconstructions
with lower MSEs,higher PSNRs,and higher SSIMs com-
pared with that of the MCBP and two iterative algorithms
(Table 4).
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F IGURE 3 The two-dimensional (2D) projection results of part of simulations of radiopharmaceutical imaging based on 3D-printing mouse
phantom, where the radiopharmaceuticals were distributed randomly and irregularly in organs. The columns from the left to right were the exact
distributions of radiopharmaceuticals and the reconstruction results of the Monte Carlo back projection (MCBP), list-mode maximum likelihood
expectation maximization with point spread function (LM–MLEM–PSF), subset-driven origin ensemble with resolution recovery (SD–OE–RR),
and the proposed MCBP-CCnet, respectively. The red dotted line in the figures represents the profiles selected in Figure 4.

F IGURE 4 The comparison of the profiles in part of simulations of radiopharmaceutical imaging based on three-dimensional (3D)-printing
mouse phantom
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TABLE 2 The results of different methods for the four simulation datasets shown in Figure 3

Methods

Simulation S#1 Simulation S#2 Simulation S#3 Simulation S#4
MSE PSNR SSIM MSE PSNR SSIM MSE PSNR SSIM MSE PSNR SSIM

MCBP 0.1449 8.3897 0.0056 0.2286 6.4086 0.0059 0.1639 7.8536 0.0039 0.1160 9.3553 0.0056

MLEM–PSF 0.0500 13.0105 0.8792 0.0848 10.7148 0.8663 0.0442 13.5446 0.8601 0.0262 15.8252 0.8781

OE–RR 0.0481 13.7918 0.9231 0.0838 10.7686 0.8737 0.0476 13.2371 0.8794 0.0257 15.8969 0.8890

MCBP-CCnet 0.0001 47.0742 0.9970 0.0001 48.6673 0.9996 0.0001 50.2081 0.9997 0.0001 42.7758 0.9979
Note:The simulation S#1, S#2, S#3, and S#4 represented the four sets from the top to the bottom, respectively.
Abbreviations:MCBP,Monte Carlo back projection;MLEM–PSF,maximum likelihood expectation maximization with point spread function;MSE,mean square error;OE–RR,
origin ensemble with resolution recovery; PSNR, peak signal-to-noise ratio; SSIM, similarity index metric.

F IGURE 5 The 2D projection results of part of simulations of radiopharmaceutical imaging based on three-dimensional (3D)-printing
mouse phantom, where the radiopharmaceuticals were distributed randomly and irregularly in organs as well as with random metastasis. The
columns from the left to right were the exact distributions of radiopharmaceuticals, the reconstruction results of the Monte Carlo back projection
(MCBP), list-mode maximum likelihood expectation maximization with point spread function (LM–MLEM–PSF), subset-driven origin ensemble
with resolution recovery (SD–OE–RR), and the proposed MCBP-CCnet, respectively. The red dotted line in the figures represents the profiles
selected in Figure 6.

3.3 Radiopharmaceutical imaging
experiments

As shown in Figure 7, for the experiments, with the
projection data less than 3000 effective events with
a measurement time of 30 s, the results obtained by
the MCBP could roughly distinguish the radioactive

sources in different regions. The results obtained by the
LM–MLEM–PSF and the SD–OE–RR were better when
the sources were distributed in a single tissue area,
such as the bladder, whereas there would be severe
distortion for radioactive sources distributed over multi-
ple or greater tissue areas (e.g., existing simultaneously
in the head and bladder, or two kidneys). In contrast,
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F IGURE 6 The comparison of the profiles in part of simulations of Figure 5 based on three-dimensional (3D)-printing mouse phantom

TABLE 3 The results of different methods for the four simulation datasets shown in Figure 5

Methods

Simulation M#1 Simulation M#2 Simulation M#3 Simulation M#4
MSE PSNR SSIM MSE PSNR SSIM MSE PSNR SSIM MSE PSNR SSIM

MCBP 0.1257 9.0060 0.0105 0.0832 10.7968 0.0171 0.1292 8.8883 0.0026 0.1451 8.3847 0.0074

MLEM–PSF 0.0106 19.7447 0.7460 0.0109 19.6422 0.8044 0.0123 19.0895 0.4678 0.0150 18.2320 0.2885

OE–RR 0.0116 25.3596 0.7776 0.0100 26.0158 0.8447 0.0120 25.5303 0.7321 0.0117 25.3413 0.7272

MCBP-CCnet 0.0006 32.1072 0.9646 0.0028 25.4875 0.9234 0.0011 29.7393 0.9515 0.0001 41.7698 0.9957
Note: The simulations M#1, M#2, M#3, and M#4 represented the four sets from the top to the bottom, respectively.
Abbreviations: MCBP, Monte Carlo back projection; MLEM–PSF, maximum likelihood expectation maximization with point spread function; MSE, mean square error;
OE–RR, origin ensemble with resolution recovery; PSNR, peak signal-to-noise ratio; SSIM, similarity index metric.

TABLE 4 The results of different methods for the four experimental datasets

Experiment 1 Experiment 2 Experiment 3 Experiment 4
Methods MSE PSNR SSIM MSE PSNR SSIM MSE PSNR SSIM MSE PSNR SSIM

MCBP 0.0375 5.1222 0.0246 0.1872 7.2780 0.0054 0.1690 7.7213 0.03221 0.1917 7.1746 0.0359

MLEM–PSF 0.0318 14.9825 0.5113 0.0076 21.2114 0.8253 0.0006 32.1268 0.8009 0.0046 23.4194 0.8229

OE–RR 0.0212 16.7312 0.5948 0.0071 21.4649 0.8320 0.0010 29.9797 0.8005 0.0010 29.8964 0.8431

MCBP-CCnet 0.0001 40.9686 0.8606 0.0001 39.0269 0.7850 0.0001 39.9367 0.8156 0.0002 37.7713 0.8545

Note: The #1, #2, #3, and #4 represented a randomly selected testing dataset from head and bladder, kidneys, bladder, and head in Figure 7, respectively.
Abbreviations: MCBP, Monte Carlo back projection; MLEM–PSF, maximum likelihood expectation maximization with point spread function; MSE, mean square error;
OE–RR, origin ensemble with resolution recovery; PSNR, peak signal-to-noise ratio; SSIM, similarity index metric.

the output images processed by CC-Net were almost
completely consistent with the accurate distribution in
the spatial distribution and the relative intensity of the
radioactive sources. The time consumption for obtaining
the final reconstruction images was also less than 5 s.
As shown in Table 4, the reconstructions obtained by
the proposed method could have better image qual-
ity compared to the reconstructions obtained by the
MCBP, LM–MLEM–PSF, and SD–OE–RR algorithms
in terms of the MSE, PSNR, and SSIM, respectively
(Figure 8).

3.4 Overall performance of the
MCBP-CCnet

The decreasing trend of loss was almost the same
and the loss was almost equal after reaching the
preset epochs, which showed that the trained model
had almost no overfitting. As shown in Table 5, the
results based on the trained model had close met-
rics on the simulated test set and all experimental
datasets,demonstrating the robustness of the proposed
method.
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F IGURE 7 The 2D projection results of part of experiments of radiopharmaceutical imaging based on three-dimensional (3D)-printing
mouse phantom. The columns from the left to right were the exact distributions of radiopharmaceuticals, the reconstruction results of the Monte
Carlo back projection (MCBP), list-mode maximum likelihood expectation maximization with point spread function (LM–MLEM–PSF),
subset-driven origin ensemble with resolution recovery (SD–OE–RR), and the proposed MCBP-CCnet, respectively. All the distributions of the
radiative sources were of registration with the actual 3D-printing mouse phantom.

TABLE 5 The overall performance of the MCBP-CCnet in the
three different testing datasets

Testing datasets MSE PSNR SSIM

Radiopharmaceuticals simulation
(irregularly and randomly
distributed in organs)

0.0001 41.8937 0.9120

Radiopharmaceuticals simulations
with metastasis (irregularly and
randomly distributed in organs)

0.0004 36.1935 0.9709

Radiopharmaceutical experiments
based on a 3D-printing mouse
phantom

0.0004 38.1301 0.8333

Abbreviations: 3D, three-dimensional; MSE, mean square error; PSNR, peak
signal-to-noise ratio; SSIM, similarity index metric.

4 DISCUSSION

In this study, we took the advantage of the MCBP to
obtain fast pre–back projection images while achiev-
ing the resolution recovery and then used the CC-Net
to obtain the accurate reconstruction results by using

the characteristics of the preliminary reconstructed dis-
tribution. The computational complexity of our further
modified MCBP was O(N × k), where k was the prod-
uct of the number of random sampling per event and
the number of resolution corrections per projection data.
For 3000 events, the reconstruction took about 4 s. The
proposed CC-Net could achieve resolution recovery and
image enhancement through feature extraction. For the
inputs with the 128 × 128 matrix in the reconstruction
where the side length of the pixels in the field of views
was 0.78 mm, the prediction time was less than 0.009 s.

As shown in Figure 3, the trained CC-Net with MCBP
could be applied to the reconstructions of all random
and irregular radiopharmaceutical distribution with an
accuracy of within 0.78 mm for the maximum intensity
positions. Although the absolute intensities were slightly
different, the relative intensity deviations of the overall
radiation source were less than 0.0001 in terms of MSE.
Besides, for the cross-sectional view passing through
the radioactive sources within the region of interest in
Figure 4, the deviations of the complex edges were less
than 1 mm,demonstrating the feasibility of the proposed
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F IGURE 8 The comparison of the loss (i.e., the mean square error [MSE] between the prediction obtained by the MCBP-CCnet and the
label [exact values]) for the training sets and testing sets.

method for resolution recovery and high-resolution CC
reconstruction.

For the radiopharmaceutical imaging based on
a simulated 3D-printing mouse phantom with the
irregular distribution in organs and random metas-
tasis, the proposed method successfully realized
the reconstruction of the complex radiopharma-
ceutical distributions in the phantom with spare
projection data. The MSE metric was about 0.0004,
which was promising to realize an accurate reconstruc-
tion of the irregular distribution in different organs and
the in vivo possible metastasis of the radiopharma-
ceutical. As the coincidence events obtained during
actual measurement could have very short Compton
levers, such as less than 2 mm, which was close to
the positional deviation of depth measurement, the
spatial deviation of the Compton cone was larger due
to the deviation of projection data. Moreover, the lack of
sufficient temporal resolution in the experiment further
increased the bias of the reconstruction by incorrectly
deciding whether the action position was a scatter-
ing point or an absorbed point. Thus, the preliminary
reconstruction obtained by MCBP had a larger level
of positional deviations and background noise. In this
case, the proposed method trained by the simulated
data was implemented successfully in the experimental
data, although the metrics for the experimental datasets
were lower than the simulation of radiopharmaceu-
ticals distributed irregularly in organs. However, due
to the limitation of the shape of the capsule in the
3D-printing mouse phantom and the volume of radio-
pharmaceuticals that can be accommodated, the exact
spatial distributions of the radioactive sources in the
experimental data had fewer features compared to
the simulated data. Thus, the PNSR metrics for the
experimental datasets were higher than the simula-
tion of radiopharmaceuticals distributed irregularly in

organs with random metastasis, the source distributions
of which were more complex. There was almost no
overfitting in the trained CC-Net because of the close
metrics on the simulated training sets and testing sets.
In addition, the results demonstrated the feasibility of
the experimental high-resolution reconstruction via the
proposed method trained in the simulations, where
the MSE of all experimental datasets obtained by the
proposed method was 0.0004. Moreover, the projection
data used in the reconstructions were only obtained by
the detection time of 30 s. Although the simulated data
closer to the actual measurement or pre-preliminary
measurement for calibration was required for the CC-
Net training in future clinical applications, the results
showed the potential for the future dynamic real-time
monitoring of in vivo radiopharmaceuticals with the
3D-CZT CC and the proposed method.

In contrast to existing radiopharmaceutical imaging
techniques, our study provides an approach that com-
bined a DL–based reconstruction method and a 3D-CZT
CC. On the one hand, we investigated the method of
rapid and high-resolution radiopharmaceutical imaging
with the 3D-CZT CC and further presented its poten-
tial for dynamic monitoring in future nuclear medicine
imaging. On the other hand, we propose a DL–based
CC reconstruction method, overcoming the difficulty of
the current iterative and analytical algorithms in realiz-
ing the rapid and high-resolution reconstruction with the
sparse projection data.

5 CONCLUSION

In this study, we propose a DL–based CC algorithm
via Monte Carlo sampling–based back projection and
CC-Net. The simulation and experiment results demon-
strated that the method could realize the rapid and
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high-resolution CC reconstruction with sparse projec-
tion data obtained by the 3D-CZT CC. We realized the
rapid reconstruction within 35 s for experimental radio-
pharmaceutical imaging based on a 3D-printing mouse
phantom,and the high-resolution imaging with the accu-
racy of within 0.78 mm in terms of the sparse projection
data, which only contained hundreds of events. The
study in this paper also demonstrated the potential and
feasibility of future applications of a 3D-CZT CC for
real-time high-resolution radiopharmaceutical imaging
with short-time measurement.
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