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A B S T R A C T

Selective laser melting (SLM) provides a novel path to fabricate austenitic stainless steels used in the nuclear
reactors. Meanwhile, obvious differences in the microstructures of materials present between SLM and con-
ventional process, which causes a discrepancy in the helium (He) tolerance. In present work, an austenitic
stainless steel (type 316L) manufactured through SLM was irradiated by He ions at 450 °C with the concentration
approximately 0.8% and then characterized via multiple methods. Results showed the special microstructure
containing cellular sub-grains and nano-oxide inclusions, which formed owing to the SLM process, still dis-
tributed in post-irradiated samples. A decrease in the bubbles density, swelling rate, and hardness change has
also been observed compared with conventional stainless steel. The interfaces provided by the sub-grain
boundaries and nano-oxide inclusions act as effective trap sites for helium bubbles, which contributed to the
enhancement of helium tolerance.

1. Introduction

Additive manufacturing (AM), commonly known as three-dimen-
sional (3D) printing, is a near-net shape technology, which fabricates
materials based on a layer-by-layer manufacturing according to 3D
digital model data. Since AM technology changes the ways to fabricate
the complex components used in the nuclear reactors, and significantly
reduces the economic costs and production cycle, it has attracted much
attention from both the nuclear industries and academic researchers
[1–3]. Selective laser melting (SLM) is one of the most promising AM
technology for metals and alloys. A series of important progresses, such
as the joining of Inconel 718 with 316L SS and ITER In-Vessel com-
ponents, have been made in the research of AM technology for fission or
fusion reactors related materials and components [4–8].

Austenitic 316L stainless steel (316L SS) has been extensively used
as the components in nuclear power plants owing to its good mechan-
ical properties, corrosion and oxidation resistance, and formability
[9–12]. However, after long-term exposure in the radiation condition of
fission or fusion reactors, 316L SS will generate large amount of ra-
diation defects and helium (He) atoms, which leads to He bubbles,
swelling, and radiation hardening, affecting the physical and mechan-
ical properties of materials [13–17]. In recent years, the special

microstructure containing cellular sub-grains and nano-inclusions has
been reported in SLM 316L SS. The variations in microstructures be-
tween the SLM 316L SS and the steel prepared by traditional process
will not only cause the changes in the mechanical properties and cor-
rosion resistance [18–23], but also may have unexpected effects on its
radiation resistance. Hence, no matter from the aspect of evaluating the
performance of a novel promising material used in the nuclear reactors,
or on the purpose of understanding the interactions between the special
microstructures in materials and the radiation defects, it is of great
significance to explore the behaviors of SLM fabricated 316L SS under
the extreme radiation environment.

In this study, we presented the internal effects of microstructure on
bubbles distribution and hardness of SLM 316L SS, which was irra-
diated by He ions at 450 °C. Transmission electron microscopy (TEM)
and Nanoindentation tests were performed to examine the micro-
structure and harness of pre- and post- irradiated samples, respectively.
The influence of microstructure on the density of bubbles and swelling
rate was discussed in detail.
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2. Experimental

2.1. Materials and He ions irradiation

In this work, the samples were generated using a selective laser
melting facility BLT-S300 (Xi’an Bright Laser Technologies Co. China),
equipped with an IPG fiber laser with maximum 500W power output
and 70 μm diameter laser spot. In the building process, the fixed laser
parameters (power of 200W, scan speed of 850mm/s and line spacing
of 0.1mm) were used to obtain the highest density samples. The spe-
cimens with size 50×30×30mm3 were prepared in argon atmo-
sphere and cooled inside the furnace to room temperature. The samples
were divided into two groups. Each group adopted a specific approach
for post-processing. The first group were bulk samples, which were ir-
radiated by 500 keV He ions with the fluence of 1.5× 1016 cm−2 per-
formed on the 320 kV platform at the Institute of Modern Physics,
Chinese Academy of Sciences (CAS). Since most commercial reactors
work in a temperature ranging between 200 and 550 °C, the radiation
tolerance performance data of 316L SS in this temperature range is the
most abundant, especially at 450 °C [24–26]. The irradiation experi-
ments were performed at 450 °C. The depth profile of atoms distribution
and damage events calculated using SRIM2013 [27] were shown in Fig.
S1(a). And the irradiation depth induced by 500 keV He-ions can meet
the requirements of experimental characterizations for the bulk speci-
mens. In a second approach, we conducted a more convincing experi-
ment to observe the microstructure evolution before and after He ions
irradiation in a same TEM foil, at the same He-ions concentration with
the first group. From the experiments, more contrastive results can be
achieved. And the implantation experiments were then performed on
the Accelerator Laboratory of Wuhan University, using 12 keV He ions
with the fluence of 0.5× 1016 cm−2 at 450 °C. Fig. S1(b) shows the
depth profile of atoms distribution and damage events.

2.2. Characterization

The microstructure of the first group of SLM 316L samples were
characterized by multi-scale methods including X-ray diffraction (XRD,
D8 Advance), optical microscopy (OM, Zeiss Scope A1), scanning
electron microscope (SEM, Apollo 300), and transmission electron mi-
croscope (TEM, Tecnai G2 F20 S-Twin). To identify the crystal structure
of the pre- and post-irradiated SLM samples, grazing incidence X-ray
diffraction (GIXRD) with a CuKα (λ=1.54 Å) target was used with the
incident angle fixed at 1°. Samples for OM and SEM observation were
ground by SiC papers and mechanically polished using diamond sus-
pensions to obtain a mirror surface, then they were etched using Ralph’s
solution. TEM foils for pre-irradiated specimens were prepared by a
standard double-jet procedure (MTPA-5, Shanghai Jiaotong
University). Another cross section TEM specimens were prepared via
focused ion beam (FIB, FEI Helios Nanolab 600) milling to better reflect
the distribution of bubbles with depth for bulk specimens.
Nanoindentation tests (Nano Indenter G200, Agilent) for the bulk
samples before and after irradiation were performed using a continuous
stiffness measurement method with a Berkovich-type indenter [28,29].
The maximum indentation depth was set at 1250 nm. The hardness
value was identified from five indentation tests for each sample.

3. Results and discussion

The ripple-like melt pools with sizes varying from 50 to 200 μm in
the etched samples observed by OM are shown in Fig. 1(a), which
formed along the laser scanning track because of the high temperature
of focal spot heated momentarily above the melting temperature of
316L SS powder. Suryawanshi and Ahmadi et al. also observed ripple-
like melt pools in the 316L SS samples which fabricated by SLM process
with different laser parameter [30,31]. In addition, cellular sub-grains
also exist with an average size of 380 nm, decorated with high density

Fig. 1. Special microstructure of 316L SS fabricated by Selective Laser Melting. (a) Optical micrographs of melt pools. (b) A SEM image, revealing melt pools, and a
large percent of cellular sub-grains. (c) An enlarged SEM image of cellular sub-grains. (d) The size of cellular sub-grains distribution in region (c). (e) A scanning TEM
(STEM) image of cellular sub-grains and nano inclusions. (f) An enlarged STEM image of nano inclusions. The inset is a high resolution TEM image of the inclusion.
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dislocations (Fig. 1(b–e)). The size of cellular structures observed here
in the SLM 316L SS are much smaller than what have been observed in
welded steels under a rapid cooling condition, typically with size be-
tween 10 and 20 μm [19]. Sun and Liu et al. reported the same mi-
crostructures surrounded with dense dislocations in a low porosity SLM
316L SS. And the size of cellular structure could be effectively adjusted
to 200–1000 nm using different scanning speeds with the line spacing of
100 μm and the power output of 100W. One possible explanation for
the formation of cellular structure is that the high thermal gradient and
the high solidification rate appeared in the fabrication process [32–34].
In addition, a large amount of spherical nano-size inclusions are also

observed under TEM. The average size and number density of inclu-
sions obtained by image analysis were measured approximately 60 nm
and 4.2×1020 m−3, respectively. And the amount of inclusions ob-
tained was approximately 5 vol%. A high resolution TEM image with
the inserted selected area electron diffraction (SAED) pattern (See Fig.
S3) shows that the nanoparticles are amorphous. The EDS linear scan-
ning was used to analysis the compositions of the spherical inclusion,
which further confirms that the inclusion contains Si, Cr, O, and Mn.
And the result is agreement with Sun’s work [34], which used a fast
scanning speeds to prepare a low porosity 316L SS parts via SLM pro-
cess. The oxygen content in the facility and a high cooling rate in the

Fig. 2. The microstructure of post-irradiated bulk samples and the changing of hardness. (a) GIXRD spectra obtained on a SLM 316L SS before and after irradiation.
(b) A STEM image, revealing the cellular sub-grains and nano inclusions in post-irradiated samples. (c) A bright field TEM micrograph showing the distribution of He
bubbles. The right one shows a smaller density of He bubbles distributing around the surface of the nano inclusion. (d) Size distribution of bubbles. (e) and (f) The
nanoindentation hardness versus the indentation depth of pre- and post-irradiated specimens, respectively. The insets show curves of H2 − 1/D for pre- and post-
irradiated specimens. And the dotted vertical line in the inset of (f) was used for identifying the bi-linearity.
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SLM process may be the key factor in the formation of nano-size in-
clusions.

Compared with the microstructure before and after irradiation, the
samples remained original FCC phase without the formation of de-
tectable second phase (Fig. 2(a)). Fig. 2(b) and (c) show the cross-sec-
tional TEM specimen of bulk samples, which were thinned to 80 nm via
FIB. The cellular sub-grains and nano inclusions can still be observed in
post-irradiated samples, and their morphology and size do not ob-
viously change compared with Fig. 1(e). A large amount of He bubbles
formed in the highest He-atoms concentration region, namely, the
depth around 900–1050 nm, as shown in Fig. 2(c). The average size and
density of He bubbles are 1.4 nm and 3.6× 1023 m−3, respectively.
Owing to the accumulation of He bubbles, materials swelling rate in-
duced by the irradiation was deduced to be 0.056%, which was cal-
culated as their volume fraction [35]. Compared with previous reports
of traditional 316L SS within the same concentration of He atoms
around 0.8% [25,26], which was irradiated by 10 keV He ions at 450 °C,
the size of bubbles is almost unchanged. However, the density of He
bubbles and the swelling rate are reduced especially compared with
316L SS prepared by traditional process [25]. The comparison details
were shown in Table S1. The difference in process between SLM and
traditional methods leads to the variations in microstructures. In

present report, cellular sub-grains and nano inclusions were stable in
the pre- and post-irradiated SLM 316L SS samples, which increases the
fraction of interfaces compared with conventional samples. And this
may play a key role in the mobility of He atoms and irradiated defects.
A more detailed discussion will be presented later in the article.

Fig. 2(e) and (f) show the average nano-indentation hardness of
SLM 316L SS before and after irradiation as a function of the indenta-
tion depth. To get rid of the indentation size effect, the hardness data
were plotted as the square of hardness (H2) versus the reciprocal of
indentation depth (1/D) according to the report of Kasada et al.
[36,37], as shown in the inserted picture. For original samples, the
curve shows a good linearity when the indentation depth is greater than
140 nm. However, a bi-linearity with an indentation depth around
285–333 nm appears in the curve for post-irradiated samples. Re-
moving the data that are significantly different from other results of the
five tests, the hardness of pre- and post-irradiated bulk specimens were
calculated as 2.6 GPa and 3.1 GPa, respectively. It is obvious that the
hardness increased about 19% to original specimens. Hunn et al. also
found a similar hardening effect in the study of 316LN SS fabricated by
conventional process, which was irradiated by He ions at 200 °C [38].
And the enhancement of hardness increases from 25% to 48%, when
the concentration increases from 0.22% to 1%. The table of comparing

Fig. 3. Microstructure of post-irradiated TEM thin samples. (a) A TEM image, showing the He bubbles distribution near the SGBs. The yellow lines represent the SGBs
formed in the SLM fabrication process. The yellow circles indicate the area around the boundary of three SGBs, and the inset shows the bubbles distribution of this
area with a higher magnification TEM image. (b) The distribution of He bubbles near the interface between the inclusion and matrix. (c) and (d) A higher mag-
nification TEM image of He bubbles and the size distribution of bubbles. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
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percent hardening between the SLM 316L SS with previous work was
added in the Supplementary material Table S2. It is obvious that the
percent hardening of Hunn’s work is larger than our work, even though
under a low concentration of He ions. Contributed to the Friedel-
Kroupa-Hirsch (FKH) relation, the larger the cavity size and/or cavity
density for a given material, the higher ΔH is [39]. According to the
result of TEM images, the density of bubbles is lower than the con-
ventional samples [25,26]. We think the sub-grains and nano inclusions
formed in the fabrication process increase the fraction of interfaces,
which influence the bubbles size and density. And this may be the key
factor for a lower hardness enhancement compared with the Ref. [38].

In order to narrow the observation region, get more contrastive
results from the microstructure and the distribution of He bubbles be-
fore and after irradiation, we carried out another irradiation experi-
ment on the same TEM thin samples, and the details are shown in Fig.
S1(b). The results of Figs. S2(a) and (b) are similar to those of Fig. 2(b)
and (c), indicating the stability of the cellular sub-grains and nano-in-
clusions under this irradiation condition. As shown in Fig. 3(a), He
bubbles were observed both in the matrix and sub-grain boundaries
(SGBs). However, the density of He bubbles did increase at SGBs. A
larger size about 3 nm of He bubbles was observed around the nano-
inclusions, with a smaller density of He bubbles (Fig. 3(b)). The size of
He bubbles is shown in Fig. 3(c) and (d), and a detail comparison be-
tween this study and previous works is shown in the Supplementary
material Table S1. In the Ref. [25], the irradiation experiment was
performed with a concentration around 0.83% at 450 °C for conven-
tional 316L SS. And the size of bubbles was 1.6 nm, which is similar
with our work. Although the only two irradiation experiments cannot
show the detail comparison of bubble size and density between SLM
316L SS and conventional 316L SS, it can be seen roughly from Table S1
that the bubble density and swelling rate of post-irradiated samples in
this work is lower than the Ref. [25] with a concentration around
0.83% at 450 °C.

The mobility of He atoms is limited by the strength and density of
trap sites [40]. Previous works [41–43] have proved that grain

boundaries (GBs) can act as preferential trap sites for irradiation-in-
duced defects and He atoms due to the low migration energy of inter-
stitial He atoms allowing them to move quickly to GBs. In present re-
port, cellular sub-grains were stable in the pre- and post-irradiated
samples. And a larger density of bubbles appeared to be in immediate
the SGBs (Fig. 3(a)), suggesting that the SGBs are highly effective He
trapping sites like GBs. As shown in Fig. 4, compared with other con-
ventional 316L SS with coarse grains, cellular sub-grains increase the
fraction of interfaces in material. And interstitial atoms recombine with
the vacancies when they migrate to the SGBs, reducing the probability
of He-vacancy complex formation, which eventually weak the bubble
nucleation and growth. The region in Fig. 2(c) contains a 40–60 nm
nano-inclusion. He bubbles, obviously like white circles, seem to be in
contact with the interface between nano-inclusion and matrix. And
some the bubbles surround the nano-inclusions, which is larger than
those in other regions (Fig. 3(b)), indicating that the nano-inclusions
are preferential absorption and growth sites for He [40,44]. The nano-
inclusion also provide more interfaces, acting as recombine sites for
interstitial atoms and vacancies, which affects the diffusion of He atoms
and the nucleation of bubbles. Thus, SLM 316L SS has a good He tol-
erance, with a much smaller density of bubbles and swelling rate of
material than those 316L SS fabrication by conventional process.

As we all know, the enhancement in hardness (ΔH), is mainly re-
lated to the bubbles or voids. Contributed to the Friedel-Kroupa-Hirsch
(FKH) relation, the larger the cavity size and/or cavity density for a
given material, the higher ΔH is [39]. Compared with Ref. [38], a high
temperature in present work helps bubbles nucleation, which influence
the ΔH. It can be seen roughly from Table S2 that the percent hardening
in this work is lower than the Ref. [38], with a low concentration from
0.22% to 0.52%. The value of percent hardening in the Ref. [38] is
approximately two times as much in our work with the concentration of
0.52%. And it is mainly related to a large fraction of interfaces in the
SLM 316L SS, which provides more excellent sinks for defects and He
atoms, reducing the density of He bubbles, thus the enhancement of
hardness decreased.

Fig. 4. Schematic diagram of the effects of SGBs and inclusions to radiation defects and He bubbles (not to scale).
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4. Conclusion

In summary, structural and mechanical properties of 316L SS fab-
ricated by SLM subjected to He-ions irradiation at 450 °C with the
concentration approximately 0.8% were investigated by SEM, TEM, and
nanoindentation. The results show that SLM 316L SS has great He ra-
diation tolerance in the condition of our work. There are a considerable
number of cellular sub-grains and nano-inclusions distributed in SLM
316L SS before and after the radiation conditions, increasing the vo-
lume fraction of interfaces, which serve as effective sinks for He atoms
and radiation defects, reducing the density of He bubbles, the swelling
rate of material and the enhancement in hardness. It is worth noting
that the presently work has specifically revealed the internal effects of
microstructure on bubbles and hardness of SLM 316L SS, which was
irradiated by He ions at 450 °C. Further parameter developments for
studying irradiation effects details like temperatures, energies and flu-
ences are needed. Comparison of irradiation behavior of SLM and tra-
ditional 316L SS need to be clarified in future work on this topic.
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