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Abstract
Background: Boron neutron capture therapy (BNCT) is a binary radiotherapy
based on the 10B(n, α)7Li capture reaction. Nonradioactive isotope 10B atoms
which selectively concentrated in tumor cells will react with low energy neu-
trons (mainly thermal neutrons) to produce secondary particles with high linear
energy transfer, thus depositing dose in tumor cells. In clinical practice,an appro-
priate treatment plan needs to be set on the basis of the treatment planning
system (TPS). Existing BNCT TPSs usually use the Monte Carlo method to
determine the three-dimensional (3D) therapeutic dose distribution, which often
requires a lot of calculation time due to the complexity of simulating neutron
transportation.
Purpose: A neural network-based BNCT dose prediction method is proposed
to achieve the rapid and accurate acquisition of BNCT 3D therapeutic dose
distribution for patients with glioblastoma to solve the time-consuming problem
of BNCT dose calculation in clinic.
Methods: The clinical data of 122 patients with glioblastoma are collected.Eigh-
teen patients are used as a test set, and the rest are used as a training set. The
3D-UNET is constructed through the design optimization of input and output
data sets based on radiation field information and patient CT information to
enable the prediction of 3D dose distribution of BNCT.
Results: The average mean absolute error of the predicted and simulated
equivalent doses of each organ are all less than 1 Gy. For the dose to 95% of
the GTV volume (D95), the relative deviation between predicted and simulated
results are all less than 2%.The average 2 mm/2% gamma index is 89.67%,and
the average 3 mm/3% gamma index is 96.78%. The calculation takes about 6 h
to simulate the 3D therapeutic dose distribution of a patient with glioblastoma by
Monte Carlo method using Intel Xeon E5-2699 v4, whereas the time required
by the method proposed in this study is almost less than 1 s using a Titan-V
graphics card.
Conclusions: This study proposes a 3D dose prediction method based on 3D-
UNET architecture in BNCT, and the feasibility of this method is demonstrated.
Results indicate that the method can remarkably reduce the time required for
calculation and ensure the accuracy of the predicted 3D therapeutic dose-effect.
This work is expected to promote the clinical development of BNCT in the future.
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1 INTRODUCTION

Boron neutron capture therapy (BNCT) is a binary
radiotherapy based on the 10B(n,α)7Li capture reac-
tion, which releases two charged particles (i.e., α and
7Li) with high linear energy transfer.1,2 In previous
decades and recently, BNCT has raised much inter-
est because of its targeted treatment, low toxicity, and
high efficiency, and many countries, such as in Japan,3

in Europe,4,5 and recently in China,6 have vigorously
developed the BNCT technology. Given its high bio-
logical effectiveness, BNCT has unique advantages in
the treatment of recurrent head and neck malignan-
cies, glioblastoma, and melanomas, and the therapeutic
effect has been demonstrated in some existing clinical
cases.7–9

An accurate BNCT treatment plan is the key to guid-
ing the actual treatment.10 Considering the complexity
of neutron transport, current BNCT treatment plan-
ning systems (BNCT-TPSs) for example, NCT_Plan,11

simulation environment for radiotherapy applications
(SERA),12 THORplan,13 NeuCure system,14 and JAEA
computational dosimetry system,15 all use the Monte
Carlo (MC) method to evaluate the therapeutic dose.16

Although it can achieve satisfactory three-dimensional
(3D) therapeutic dose calculations, the MC method is
often time-consuming,17 that is, takes several hours.
Recently, the neural network (NN) technology has been
applied in various fields of medicine, such as medical
image segmentation, automated radiation therapy treat-
ment planning, dose prediction.18,19 A NN is a series
of algorithms that endeavors to recognize underlying
relationships in a set of data through a process that
mimics the way the human brain operates.20 It will
adjust its own parameters to establish the mapping
relationship between input data and target data. In the
field of conventional photon radiotherapy, the feasibility
of obtaining the 3D dose distribution of patients with
malignant tumors, such as head and neck, prostate,
breast, and lung cancers, based on NN has been
demonstrated.21 Related research also showed that
the use of NN can reduce the time required for dose
calculations.22 The successful application of NN in the
field of photon radiotherapy provides ideas and confi-
dence for its application in other fields of radiotherapy.
R. Ahangari et al. has proposed to use the artificial
neural network to predicted the one-dimensional dose
distribution in Snyder head phantom so as to evaluate
the quality of neutron beam.23 However, to our knowl-
edge,no study on NN-based patient dose prediction has
been performed in BNCT, which is far more complex
and time-consuming than photon and charged-particle
therapies.

In this paper,a NN-based method for the rapid assess-
ment of the 3D therapeutic dose distribution of patients
with glioblastoma in BNCT is proposed, and the fea-

sibility of this method is demonstrated through dose
volume histograms (DVH),gamma index,dose deviation
analysis, and other methods.

2 MATERIALS AND METHODS

2.1 Patient data and preprocessing

In this study,we collect CT data from 122 patients (male:
78, female: 44) with glioblastoma at the Jiangsu Cancer
Hospital from March 2021 to March 2022. Their ages
range from 29 years to 81 years, and the median age of
all patients is 58 years. All data have been authorized
by the Ethics Committee of Jiangsu Cancer Hospital
(ID: 2022011). Radiation oncologists have delineated
the gross tumor volume (GTV), skin, and organs at risk
(OAR) in the planning CT. The dimension of CT images
is ranged to 125 × 125 × 60,and the corresponding pixel
size is 2.5391 × 2.5391 × 3 mm3. A total of 104 cases
are used as training set, and 18 cases are used as test
set.The organs and organ numbers involved in this work
are shown in Table 1.

2.2 Configuration of 3D U-NET

In this work, the 3D BNCT therapeutic dose distribution
is predicted through 3D-UNET24,25 as shown in Figure 1.
The encoder creates multi-level, multi-resolution feature
representations by computing feature maps of various
sizes and degrees of abstraction from the input patches
of 3D images. Instead of directly performing supervision
and loss back propagation on the high-level semantic
features, the decoder decodes the features. The skip
connection ensures that the final recovered feature map
contains more low-level features. Additionally, dimen-
sional features allow for the fusion of features at various
scales.26

The encoder is a Visual Geometry Group (VGG-
style)27 convolutional neural network consisting of two
convolutional modules,each followed by a leaky rectified

TABLE 1 Organs involved in this work

Organ
Organ
label

GTV 1

Brain stem 2

Eye (left/right) 3/4

Optic nerve (left/right) 5/6

Skull 7

Brain 8

Skin 9
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3010 3D BNCT DOSE PREDICTION

F IGURE 1 Configuration of 3D U-NET used in this study.

linear unit (LeakyReLU)28 with a leaky factor of 0.1 and
a max pooling operation with a stride of 2. The decoder
restores and decodes the abstract features to the size
of the original image by transposing the convolution and
then connects with the cropped encoder feature map.
Each convolution is followed by a leakage factor of 0.1
LeakyReLU.The 3D dose distribution for BNCT is output
through the final convolutional layer.

The 3D-UNET is designed with four 3D-matrices as
input, that is, ① 3D density image; ② 3D irradiation field;
③ 3D patient contour; ④ a 3D image calculated by multi-
plying image ① and ②. For the 3D irradiation field matrix,
voxels within the irradiation field are assigned a value
of 1, and those outside the irradiation field are given a
value of 0. In the same way, in patient contour images,
voxels inside of patients are given a value of 1, and
those outside of patients are given a value of 0. The 3D
therapeutic dose for BNCT consists of four parts, that
is, boron dose (10B(n, α)7Li), fast neutron dose (1H(n,
n’)1H), thermal neutron dose (14N(n,p)14C),and gamma
dose.Since fast neutron dose and thermal neutron dose
are all caused by the protons and share the same rel-
ative biological effectiveness (RBE) factors, these two
dose distributions are added and the result is named
as proton dose in this study. Therefore, when analyzing
the 3D therapeutic dose of BNCT, three dose compo-
nents are analyzed, that is, boron dose (DB); proton
dose (Dp);and gamma dose (Dγ).The photon-equivalent
dose (D) is obtained by multiplying the doses of the
different components and the corresponding RBE or
compound biological effectiveness (CBE), as shown in
equation (1). In this current paper, all the doses pre-
sented in the results are RBE or CBE weighted doses
with the unit of Gy. The parameter WB is the corre-
sponding CBE factor of DB. When using the amino acid
p-boronophenylalanine (BPA), WB is 3.8 for tumor; 1.4
for normal organs and 2.5 for skin.29 The parameter Wp

is the corresponding the RBE factors of Dp, and for all
tissues, Wp is 3.2.

D = WB × DB + Wp × Dp + D𝛾 (1)

Therefore, we train three separate networks to esti-
mate the boron dose per ppm boron-10 (DB-NN),gamma
RBE-dose (Dγ-NN), and proton RBE-dose (DP-NN) which
represents Wp × Dp in equation (1), respectively. The
equivalent dose predicted by NN (DNN) can be obtained
as equation (2). The parameter CB in equation (2)
is the boron concentration distribution of the patient,
which is often obtained by in vitro experiments or PET
scanning.30,31

DNN = WB × CB × DB−NN + DP−NN + D𝛾−NN. (2)

2.3 Monte Carlo simulation and dose
calculation

The Geant4 MC toolkit is used to perform the coupled
simulation for neutrons, charged particles, and photons.
The number of simulated particles for each patient is
2 × 108 to ensure enough uncertainties as in previous
studies.32 The doses calculated in this study are all
30-min RBE doses. The boron concentrations of the
tumor, normal tissues, and skin are set as 60, 18, and
25 ppm,33,34 respectively. The TOP irradiation geome-
try (i.e., the neutrons irradiating from head to foot) is
used, as shown in Figure 2a. In simulations, the airgap
between the neutron source and the surface of the
patient with glioblastoma is 10 cm. The diameter of the
incident neutron beam set in the simulations is 12 cm,
and the center of incident neutron beam corresponds
to the center of the tumor. The Massachusetts Institute
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3D BNCT DOSE PREDICTION 3011

F IGURE 2 (a) Head glioblastoma location and irradiation geometries. (b) Incident neutron spectrum used in the simulations.

of Technology reactor neutron source is selected, and
the energy spectrum is shown in Figure 2b.35,36 The
equivalent dose obtained for different tissues by the
MC method (DMC) is calculated by the counting card
combined with the kerma factor.37

2.4 Prediction performance evaluation

In this study,the prediction performance of the 3D-UNET
is assessed in two ways. The first direct way is to eval-
uate the dose deviation (Ddev), and relative deviation
(Rdev) between DMC and DNN for each voxel, as shown
in equations (3) and (4), respectively.The mean absolute
errors (MAE) of different organs are also calculated, as
shown in equation (5),where i stands for voxel point,and
n is the total voxel of different organ.

Ddev = DNN − DMC. (3)

Rdev =
|DNN − DMC|

DMC
. (4)

MAE =

∑n
i=1

|||DNNi
− DMCi

|||
n

. (5)

The DVH comparison between simulated and pre-
dicted results are presented, and the relative deviation
results of doses received by 99% (D99), 98% (D98), 95%
(D95), 50% (D50), and 2% (D2) of the GTVs’ volume of
all patients are calculated to assess the performance
of this 3D dose prediction method. The gamma index is
also calculated to assess the prediction results,and only
the voxels whose dose value is higher than 10% of the
maximum dose are counted.38

3 RESULTS

3.1 Prediction results of 3D therapeutic
dose distribution

On the basis of the data processing method and 3D
U-NET network described above,we complete the train-
ing and prediction of the BNCT 3D therapeutic dose.
Loss function results of the different dose components
at 250 epochs are shown in Figure S1, where the num-
ber of epoch indicates the number times that the NN
will work through the entire training set.39 According to
the value of loss function, the 249th epoch is selected
to predict the BNCT therapeutic dose. Taking the result
of a patient with glioblastoma as an example, DNN and
DMC are shown in Figure 3. From top to bottom,Figure 3
shows the organ and dose distribution results of the 8th,
12th, and 22nd layers of this patient. Results show that
the 3D therapeutic dose distribution of patients can be
well predicted on the basis of the 3D U-NET network,
input and output data designed in this work. In addition
to the results shown in this paper, we also present the
3D dose results of other patients in Figures S2-S5.

The relative deviation of therapeutic dose of different
organs in the test data are also analyzed. The relative
deviation can be calculated using equation (3), the ther-
apeutic results are shown in Figure 4 and Table 2. The
average deviation of skin dose predicted could reach
10%, and that of other organs, including GTV, is about
2%–4%. However, MAE results show that the average
MAE of all organs are less than 1 Gy. Further, the maxi-
mum dose (Dmax), average dose (Dmean), and minimum
dose (Dmin) of different organs in 18 patients are calcu-
lated, as shown in Table 3. It can be seen that the DNN
values of different organs are close to DMC, which fur-
ther demonstrates the accuracy of the dose prediction
method proposed in this work.
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3012 3D BNCT DOSE PREDICTION

F IGURE 3 Comparison of simulated and predicted dose distributions in different depths. (a) Organ distribution map at different depths. (b)
The distribution of DMC at different depths. (c) The distribution of DNN at different depths. (d) Deviation distribution at different depths between
DMC and DNN. (e) Relative deviation at different depths between DMC and DNN.

F IGURE 4 Deviation results of DNN and DMC of different organs. (a) MAE between DNN and DMC of different organs. (b) Relative deviation
between DNN and DMC of different organs.

Further, the prediction effects of the three dose com-
ponents have been evaluated, respectively. The MAE
and relative deviation of different dose components of
different organs in the test data are shown in Figure 5.
It should be noted that the boron dose presented in
Figure 5 is the REB boron dose calculated by equa-
tion (2) (i.e.,WB × CB × DB-NN), the proton dose is DP-NN
and the gamma dose is Dγ-NN. It can be seen that the
predicted results of the three dose components are very
close to the simulation results. The MAE of GTV is the

largest in all organs. For boron dose, the average MAE
of GTV is about 1 Gy, while for the other two dose com-
ponents, the average MAE of GTV is almost less than
0.1 Gy. In addition, it can be seen from the relative devi-
ation results that the mean relative deviation of skin is
the largest in all organs, especially the boron dose and
proton dose.

The reason for this phenomenon could be that the
region of skin is the edge of the patient and dose distri-
bution, and most skin pixels receive low doses. In order
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3D BNCT DOSE PREDICTION 3013

F IGURE 5 The MAE and relative deviation results of DNN and DMC. (a) MAE between DNN and DMC of boron dose. (b) MAE between DNN
and DMC of proton dose. (c) MAE between DNN and DMC of gamma dose. (d) Relative deviation between DNN and DMC of boron dose. (e)
Relative deviation between DNN and DMC of proton dose. (f) Relative deviation between DNN and DMC of gamma dose.

to analyze the reason, the skin pixels have been clas-
sified according to the simulated dose, and the mean
relative deviation between DNN and DMC under each
dose range have been calculated, as shown in Figure 6.
It can be seen that the larger the dose deposited in
the skin pixel, the smaller the relative deviation between
the DNN and DMC in these pixels. Therefore, it can be
explained that although the relative deviation between
DNN and DMC of skin is large, these relative deviations
are mainly generated by the pixels with the dose less
than 1 Gy (or even lower), and it will not affect the
accuracy of the 3D dose therapeutic prediction.

3.2 Evaluation of predicted dose
distribution based on DVH and gamma
index

In addition to analyzing the dose values of each organ
or voxel, we perform the DVH analysis for each patient

TABLE 2 Relative deviations between DNN and DMC of different
organs

Organ

Relative deviation (%)
(95% Confidence
Interval)

GTV 2.097 (1.414, 2.779)

Skin 11.753 (10.711, 12.794)

Brain stem 1.868 (1.532, 2.205)

Eye 3.206 (2.528, 3.884)

Optic nerve 1.976 (1.566, 2.386)

Skull 3.578 (3.164, 3.992)

Brain 3.294 (2.844, 3.745)

with glioblastoma, and the results of four patients with
glioblastoma are shown in Figure 7. The predicted DVH
in different organs of patients with glioblastoma is basi-
cally consistent with the simulated DVH. Figure 8 shows
the relative deviation results of dose received by D99,
D98, D95, D50, and D2 of all patients. The average devi-
ation between the GTV doses of D99, D98, D95, D50, and
D2 are less than 2%, indicating that the predicted GTV
dose distributions of different patients with glioblas-
toma in this work are consistent with the simulated GTV
dose. Finally, for all test data, the average 2 mm/2%
gamma index is 89.67% (85.20%, 94.14%), and the
average 3 mm/3% gamma index is 96.78% (95.12%,
98.44%), and the values in parentheses represent 95%
confidence intervals. There are, in fact, several cases
which the performance of the 3D dose distribution pre-
dicted are not satisfactory, as shown in Figure 9. The
GTV of patient 5 is almost closest to the body sur-
face in all cases involved in this work, also the tumor
is quite large, therefore these effects would deteriorate
the performance of 3D dose prediction.

4 DISCUSSION

In this study, a novel method based on NN to predict
the BNCT 3D dose distribution is proposed to solve the
complex and time-consuming problems of dose calcula-
tion based on MC simulation. Compared with traditional
photon radiotherapy, the neutron beam used in BNCT
has a wide energy range, and the transport process of
neutrons in biological tissues is complex. In addition,
the dose components of BNCT are complex due to
the complicated neutron reactions. These problems
make the BNCT 3D therapeutic dose prediction difficult.
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3014 3D BNCT DOSE PREDICTION

TABLE 3 Different doses obtained by MC simulation and NN prediction

Dmax (Gy) (95%
Confidence Interval)

Dmean (Gy) (95%
Confidence Interval)

Dmin (Gy) (95%
Confidence Interval)

GTV simulated 62.387 (61.170, 63.603) 53.791 (52.585, 54.998) 43.796 (41.475, 46.116)

GTV predicted 62.448 (61.240, 63.656) 54.039 (53.019, 55.059) 44.012 (41.973, 46.051)

Skin simulated 13.649 (13.251, 14.048) 2.050 (1.946, 2.154) 0.116 (0.103, 0.129)

Skin predicted 13.762 (13.405, 14.119) 1.987 (1.888, 2.085) 0.075 (0.066, 0.085)

Brain stem simulated 4.256 (3.900, 4.612) 2.343 (2.159, 2.527) 0.869 (0.792, 0.946)

Brain stem predicted 4.228 (3.880, 4.576) 2.347 (2.164, 2.530) 0.893 (0.816, 0.971)

Eye simulated 2.542 (1.729, 3.355) 1.145 (0.819, 1.471) 0.439 (0.367, 0.512)

Eye predicted 2.543 (1.737, 3.349) 1.152 (0.829, 1.476) 0.425 (0.354, 0.496)

Optic nerve simulated 2.915 (2.304, 3.526) 1.962 (1.529, 2.394) 1.140 (0.901, 1.379)

Optic nerve predicted 2.904 (2.303, 3.505) 1.964 (1.537, 2.391) 1.134 (0.905, 1.364)

Skull simulated 11.221 (10.917, 11.526) 2.633 (2.454, 2.811) 0.150 (0.124, 0.176)

Skull predicted 11.273 (10.983, 11.563) 2.655 (2.483, 2.826) 0.144 (0.123, 0.164)

Brain simulated 12.512 (12.176, 12.849) 2.547 (2.439, 2.655) 0.117 (0.105, 0.129)

Brain predicted 12.359 (12.058, 12.659) 2.542 (2.442, 2.642) 0.097 (0.083, 0.111)

F IGURE 6 (a) Voxel counts under different boron dose range. (b) Relative deviation between DNN and DMC of boron dose under different
dose range. (c) Voxel counts under different proton dose range. (d) Relative deviation between DNN and DMC of proton dose under different
dose range.
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3D BNCT DOSE PREDICTION 3015

F IGURE 7 Examples of DVH comparison between simulated (solid line) and predicted (dashed line) results.

F IGURE 8 Average dose results for GTV in all tested
glioblastoma patients.

Considering the physical principles behind the dose
calculation, we designed four inputs for NN, that is, ① 3D
density image; ② 3D irradiation field; ③ 3D patient con-
tour;④ a 3D image calculated by multiplying image ① and
②. We train three networks to achieve the prediction of
different dose components.The purpose of inputting 3D
density distribution to the 3D U-NET network is to enable
the network for the analysis of the attenuation law of
different radiation particles in the patient’s body. BNCT
generally adopts a fixed large irradiation field (i.e., the
diameter is 12 cm), which will lead to large dose differ-
ences inside and outside the irradiation field. Therefore,
the irradiation field information should be input. In addi-
tion,our previous experiments showed that the predicted
image is blurred, specifically, the background area out-
side the patient body often has the dose value. To solve
this problem, we input the contour of the patient body to
the network. Finally, considering the strong attenuation
of neutrons in tissue, the 3D density distribution image
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3016 3D BNCT DOSE PREDICTION

F IGURE 9 Cases with poor 3D dose distribution prediction results.

and the irradiation field image are combined as an input
to strengthen the judgment of the network on the law
of dose change with depth distribution.

Loss function results show that with the increase
of training epochs, the three networks are eventually
converging without overfitting, which means that the
input and output samples designed in this study are
reasonable. Further, the performance of dose prediction
is evaluated through a series of evaluation methods.
From the Rdev distribution between DNN and DMC, the
voxels where the Rdev is large are mainly at the edge
of the radiation field, that is the skin. According to the
statistical results of the Rdev of different organs in all
test cases, the Rdev of skin can reach more than 10%.
This phenomenon may be caused by the steep drop in
the dose value in the edge area and the fact that the
boron concentration and biological effect factors in the
skin are much higher than those in other normal tissues
in BNCT. However, from the perspective of equivalent
dose values in different organs, the average MAE
between the DNN and DMC of skin is only about 0.2 Gy.
This result proves that the dose deviation of the skin
will not affect the application of this method. In addition
to the skin area, we are more concerned about the dose
prediction results in the GTV area. The average MAE
of GTV is the largest of all organs, but the average
MAE is only about 1 Gy. There is a certain deviation
between the simulated and predicted DVH curves of
the GTV, but the relative deviation from D99 to D2 are
all less than 2%, which indicates the accuracy of dose
prediction in the GTV area. For all test data, the average
2 mm/2% gamma index is 89.67%, and the average
3 mm/3% gamma index is 96.78%, which indicate that
the BNCT therapeutic dose prediction method based
on NN proposed in this work has high accuracy.

The most important advantage of the BNCT dose pre-
diction method is that it can remarkedly reduce the time

for BNCT dose calculation. The dose results involved in
this study are all simulated by the Intel Xeon(R) CPU E5-
2699 v4. When using Intel Xeon E5-2699 v4 for Monte
Carlo simulation, the average calculation time for each
patient with glioblastoma is about 6 h. All training and
testing are implemented on a NVIDIA 127 TITAN V
12GB graphics cards by using the deep learning frame-
work Pytorch. The time required to train 250 epochs of
each dose is about 1.5 h,whereas using the trained net-
work to predict the 3D therapeutic dose for each patient
with glioblastoma only takes about 1 s. In other words,
the calculation speed of BNCT 3D dose distribution by
the method proposed in this study is 21 600 times faster
than the MC method,and this effect is also evidently bet-
ter than other methods.For example,Lee et al.proposed
a GPU-based MC method to calculate the BNCT dose,
which can increase the calculation speed by 56 times.17

Kotiluoto et al. developed a deterministic 3D radiation
transport code MultiTrans SP3, which can be over an
order of magnitude faster than stochastic MC codes
under the similar resolution.40 These methods can
reduce the 3D dose calculation time of BNCT to tens of
minutes, but the 3D dose results can be predicted within
a few seconds by the NN method proposed in this work.

This work demonstrates the feasibility of 3D BNCT
therapeutic dose prediction method based on NN. We
believe that this 3D therapeutic dose prediction method
can be applied in many aspects of BNCT in the future.
For example, this method can be used to evaluate
quickly whether the patient is suitable for BNCT, assist
the physicist to complete the formulation of BNCT
treatment plan, or quickly evaluate the treatment effect
during the treatment. Since this work only focuses on
patients with glioblastoma and where the tumors’ depth
from the top of the head are less than 5 cm,some results
also show that the 3D dose prediction performance of
some special cases is not satisfactory due to insufficient
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data samples.However, it should be noted that the BNCT
3D dose prediction method proposed in this paper is
a universal method, which means that the method is
still applicable to the prediction of 3D dose distribution
of other tumors and also when using an accelerator-
based neutron source. For different tumor cases, the
input samples may need to be adjusted to realize the
dose prediction. Therefore, more data samples with dif-
ferent tumors will be further added to establish 3D BNCT
therapeutic dose prediction methods for different cases.

5 CONCLUSION

In the clinical application of BNCT, the time-consuming
problem of BNCT dose calculation based on MC sim-
ulation is not conducive to the rapid formulation of a
BNCT treatment plan. In this paper,a novel 3D dose pre-
diction method based on NN is proposed. The accurate
prediction of 3D BNCT therapeutic dose distribution is
realized through data set acquisition and network model
construction.Results show that the average MAEs of the
DNN and DMC of each organ are all less than 1 Gy, and
the relative deviation of the predicted dose of GTV is
less than 2%. DVH results show that the predicted dose
distribution of each organ is basically consistent with the
simulation results. The average 2 mm/2% gamma index
is 89.67%, and the average 3 mm/3% gamma index is
96.78%. In addition, the time to obtain the 3D therapeu-
tic dose distribution of different patients can be reduced
from 6 h to almost 1 s. These results indicate that the
3D BNCT therapeutic dose prediction method based
on NN proposed in this work can remarkably reduce
the time required for calculation and ensure dose accu-
racy. The dose prediction method proposed in this work
can be expected to promote significantly the clinical
development of BNCT in the future.
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