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Abstract
Overall, 100% hypergolic coal gangue (HCG)-based geopolymer foams were pro-
duced by a novel saponification-microwave foaming combined route.Microwave
foaming with and without expired vegetable oil was first used to produce CG-
based geopolymer foams. Macropores were mainly generated by microwave
foaming, and mesopores were mainly obtained by the addition of expired soy-
bean oil that underwent a saponification reaction. The effects of the oil content
on the density, porosity, pore morphology, compression strength, and methylene
blue adsorption properties were studied. High total porosity (85.9–89.0 vol%) and
acceptable compression strength (0.46–1.1 MPa) HCG-based geopolymer foams
were produced. Foams with 12.59 wt% oil exhibited the best adsorption prop-
erties, with an adsorption capacity up to 9.4 mg/g and high removal efficiency
of about 95.3%. These solid-waste-based porous components are promising
monolithic adsorbents for wastewater treatment.

KEYWORDS
adsorbents, expired oil, hypergolic coal gangue, microwave foaming, porous alkali-activated
material

1 INTRODUCTION

Coal gangue (CG), a residue with lower carbon content
than coal discharged during mining, washing, and the
processing of coal tunneling, accounts for ∼10%–15% of
unprocessed coal harvest.1–3 Owing to the rapid growth of

the coal mining industry, the total amount of CG is rising
sharply and gradually becoming one of themost significant
industrial solid residues; global CG production was about
0.7–1.5 billion tons in 2020.4 According to the Guizhou
Energy Administration, owing to the rapid expansion of
coal production capacity, the quality of raw coal in China
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has decreased, and the ash content has increased since
2016. At the same time, the degree of coal mining mech-
anization and the scale of raw coal washing have gradually
expanded. Owing to the previously mentioned factors, the
output and discharge of CG showed a rapid growth trend
from 393 million tons in 2008 to 750 million tons in 2013.
The amount of CG produced in China was 729 million
tons in 2020,3 accounting for ∼20% of the total amount of
industrial solid waste in the country. However, the com-
prehensive utilization rate of CG is only about 60%.5 CG
accumulation not only appropriates land but also leads to
the contamination of soil, water, and air, causing serious
health risks to surrounding residents.6,7 The temperature
and heat content of CG piles tend to increase owing to
oxidation, which can trigger the spontaneous combustion
of CG, forming hypergolic coal gangue (HCG) minerals.8
The mineral composition of CG varies greatly because
of the complexity and diversity of coal sources. How-
ever, the dominant chemical components are SiO2 and
Al2O3, which are considered to possess pozzolanic activ-
ity, and several other components, such as CaO, Fe2O3,
MgO,Na2O, Ti2O,K2O, and SO3.9 The principalmineralog-
ical components of CG are kaolinite, quartz, and illite.10
In addition, CG contains metakaolin, which can be acti-
vated using alkaline solutions to obtain alkali-activated
materials (AAMs).11
AAMs synthesized from amorphous aluminosilicate

minerals activated by an alkaline solution are cemen-
titious materials with high binding characteristics.12 In
fact, AAMs, developed during the 1950s by Glukhovsky,
are considered a new generation of binder materials and
have attracted wide interest in recent years.13 Gener-
ally, solid waste from industrial production containing
SiO2 and Al2O3 is utilized as an aluminosilicate source
to obtain AAMs. Therefore, the production of AAMs
offers an opportunity to upcycle a wide range of indus-
trial solid by-products into high-value materials.14 AAMs
are suitable for ceramic formation,15,16 refractories,17
fiber-reinforced composites,18,19 and thermally resistant
materials.20 The introduction of a porous structure not
only provides additional functionality to a component
but also greatly increases its added value.21,22 Particularly
in the field of water pollution, porous AAMs (PAAMs)
show unique advantages as adsorbents because the over-
all characteristics of porosity (amount of total porosity,
pore interconnectivity, pore size, and size distribution)
and adsorption characteristics (e.g., specific surface area,
number, and type of active sites) can be independently
controlled.23,24 Currently, PAAMs and alkali-activated
material foams (AAMFs) are a fast-growing research area

in the field of porous inorganic nonmetal materials, owing
to a combination of appropriate morphology25–27 and
functionality.28–30 Chemical and mechanical foaming31–34
are the most frequently used approaches for the fabrica-
tion of PAAMs, whereas other methods include replica,35
sacrificial filler,36–39 and additive manufacturing.40–42 Pre-
vious investigations have shown that cooking oils can be
used as in situ surfactants for porous geopolymers, also
known as reactive emulsion templating routes, based on
a saponification reaction mechanism.34,43 Waste cooking
oil, including frying oil and expired oil, can be reused to
produce soap.43,44 Global waste cooking oil production has
increased with population and economic development,
and waste cooking oil can be reused as a feedstock for
products, such as biodiesel, fuel, detergent, soap, lubri-
cants, polyurethane products, and aromatherapy candles
production.45–47
Most processing approaches to AAMs require a rather

long curing time (on the order of a few days) to ensure
adequate strength of the material, andmicrowave foaming
has the potential to avoid this step, simplifying the over-
all manufacturing process. Indeed, microwave irradiation,
where microwave energy penetrates a material interact-
ing at a molecular level,48 has shown promise, enabling
rapid foaming with little or no addition of blowing agents
or other pore-forming substances.49 This approach has
mainly been applied to the manufacture of foams from
a wide range of materials, such as plastics,50,51 starch,52
phenolic resins,51 and metals.53 A few studies have also
confirmed that microwaves can be used to induce the
generation of pores in a geopolymer mortar, which is a
subset of AAMs produced from aluminosilicate precursors
with a low calcium content.54–58 In contrast to conven-
tional methods of introducing porosity using a foaming
agent, microwave foaming utilizes the free water in a
fresh paste as a foaming medium. Several publications
have reported the role of sodium silicate and alkalis in
the foaming of bottom ash-based geopolymers obtained by
microwave irradiation.55,57 Up to now, density values as
low as 0.44 g/cm3 have been achieved through microwave
foaming.54
The purpose of this study is to investigate the fea-

sibility of employing microwave foaming for the syn-
thesis of HCG-based PAAMs. Expired soybean oil was
introduced as a foam stabilizer to adjust the pore struc-
ture, and its effects on the porosity, density, cellu-
lar morphology, mechanical properties, and methylene
blue (MB) adsorption properties of the foamed sam-
ples for potential sewage disposal applications were
evaluated.
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TABLE 1 Chemical composition of the hypergolic coal gangue
(wt%)

SiO2 Al2O3 Fe2O3 K2O TiO2 MgO CaO Na2O LOIa

54.12 28.83 12.22 0.96 0.89 0.80 0.78 0.29 2.62
aLOI = loss of ignition at 1000◦C.

2 EXPERIMENTAL SECTION

2.1 Materials

HCG was generated by the self-ignition of coal gangue
owing to heat accumulation. HCG fromDalianhe (Harbin,
China) was used as the only source of aluminosilicate
mineral material to fabricate PAAMs. Table 1 shows the
chemical composition of the HCG, as determined by
XRF, indicating that silica and alumina were the main
components.
The alkali-activator solution was obtained by mixing a

solution of 9.4 M NaOH (by dissolving solid NaOH from
Jindong Tianzheng, Tianjin, China in deionized water for
at least 24 h at room temperature) with a liquid water glass
(sodium silicate solution fromDongyue, Shandong, China,
with 8.3 wt% Na2O and 26.5 wt% SiO2 content) using a
top-mounted electronic stirrer (OS20-Pro, DragonLab, Bei-
jing, China). Expired oil (Jiusan, Heilongjiang, China) was
selected as the precursor for the stabilizing agent (SA), or
surfactant.

2.2 Manufacturing process

Figure 1 shows a flow diagram of the production of
PAAMs using the fast microwave foaming method. The
starting alkali-activated suspension was prepared by mix-
ing HCG and an alkali-activator solution for 20 min at
500 rpm and ambient temperature. Suspensions with a

40.89 wt% CG content had the following molar ratios:
SiO2/Al2O3 = 4.70, Na2O/Al2O3 = 1.21, Na2O/SiO2 = 0.30,
and H2O/Na2O = 16.31. Subsequently, expired oil (SAs),
defined as x% according to its weight fraction in the
solution, was added by mixing at 1000 rpm for 5 min.
Samples without oil were used as a reference. After mix-
ing, AAM slurries with different amounts of oil were
poured into a silicone mold and covered with a plastic
wrap. The samples were then cured as well as foamed
in a household microwave oven (G70F23N1L-SD, Galanz,
Guangdong, China) at a medium power setting that was
modified by the maximum power working time (i.e., 60%
working time with maximum power at 750 W and 40%
working time without microwave heating) for 5 min, after
which the specimens were cured at 75◦C in an oven for
another 24 h to consolidate the structure and further com-
plete the alkali activation reaction.59,60 An extraction step,
which was aimed at fully eliminating any residual oil and
water-soluble substance (i.e., glycerol and soap molecules
produced through the saponification reaction), was carried
out by saturating the specimens in hot water and chang-
ing the water each hour until it became clear.34,59 The
dimensions of the samples were ∼15 × 65 × 65 mm3 after
polishing.

2.3 Characterization

The bulk density (ρb) of the sampleswas determined by the
ratio between the weight of a dry parallelepiped specimen
and its geometrical volume according to ASTM C20-00.
The true density (ρt) was assessed using a water pycnome-
ter at a bath temperature of 25◦C on finely ground powders
as well as powders calcinated at 600◦C, according to ASTM
C604. The reported values are the average of three mea-
surements. The total void fraction (ε) was computed using
the following equation61:

F IGURE 1 Schematic of the synthesis of porous hypergolic coal gangue–based alkali-activated materials (AAMs) produced by the fast
microwave foaming method
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1476 LI et al.

TABLE 2 Kinetic model parameters (pseudo-first-order [PFO], pseudo-second-order [PSO], and intra-particle diffusion [IPD]) for initial
methylene blue (MB) adsorption on porous alkali-activated materials (AAMs)

PFO PSO IPDmodel
Sample qe,exp (mg/g) qe,cal (mg/g) R2 qe,cal (mg/g) R2 R1

2 R2
2

S0 R0 6.962 1.084 0.041 6.338 0.999 0.396 0.637
S1 R0 5.345 1.737 0.372 5.024 0.991 0.583 0.996
S2 R0 10.333 5.141 0.972 9.000 0.988 0.863 0.941
S3 R0 10.669 3.963 0.859 10.374 0.997 0.728 0.894
S4 R0 9.423 4.519 0.959 9.337 0.996 0.943 0.860
S5 R0 7.623 2.747 0.886 7.530 0.998 0.914 0.938

𝜀, vol% = 100% (1 − 𝜌𝑏∕𝜌𝑡) (1)

where ρb is the bulk density, and ρt is the true density.
Compressive strength tests were performed using a uni-

versal testing machine (WDW-100, Kexin, Changchun,
China) at a crosshead loading rate of 1 mm/min, and four
specimens (∼15 × 20 × 20 mm3) were cut from larger sam-
ples to obtain the average compressive strength value and
standard deviation. The samples were tested parallel to the
foaming direction.
The pore morphology of the cut cross section of

the samples was characterized using a Boshida stereo
light microscope (BD-61T, Shenzhen, China) with fixed
light optical magnification in the range 15 to ∼200×.
Selected PAAM samples with and without expired oil
were characterized using scanning electron microscopy
(SEM, Apreo S LoVac, Thermo Scientific, Madison,
USA).
The crystalline phase assemblage of the HCG and

selected AAM powders was investigated by X’Pert Pro
X-ray powder diffraction (XRD, PANalytical, the Nether-
lands) using Cu Kα radiation (λ = 1.542 Å) operated at
40 kV and 40 mA with a 2θ step size of 0.03◦ and a scan
rate of 50 s per step.
The hydration and bonding behavior of the AAMs

was characterized using a Nicolet-6700 Fourier-transform
infrared spectrophotometer (FTIR, Thermo Scientific,
USA). FTIR spectra were recorded using the KBr pellet
technique on ground specimens from 500 to 4000 cm−1.
Brunner–Emmett–Teller (BET) surface area and N2

adsorption–desorption isotherms were acquired using
a specific surface area analyzer (TriStar II 3020 2.00,
Micromeritics, USA). The pore volume, pore size distri-
bution, and average pore size were obtained according
to the Barrett–Joyner–Halenda (BJH) analysis using the
desorption branch.

2.4 Adsorption tests

The adsorption of MB by samples produced with differ-
ent amounts of oil was investigated by stirring 0.2 L of

MB solution (40 ppm) with ∼0.8 g of foam samples using
a magnetic stirrer (S10-3, Sile, Shanghai, China) at room
temperature. The stock solution was prepared by dissolv-
ing MB (Yousuo, Shandong, China) in deionized water,
and the physicochemical characteristics of the MB are
reported in Table 2. TheMB concentrationwas determined
using an ultraviolet–visible spectrophotometer (UV-2100
PC, Jinghua, Shanghai, China) at a wavelength of 664 nm.
The amount ofMBuptake (q) and removal efficiency (E)

were computed according to the following equations62:

𝑞 (mg∕g) =
(𝐶0 − 𝐶𝑡)

𝑚
× 𝑉 (2)

𝐸 (%) =
(𝐶0 − 𝐶𝑒)

𝐶0
× 100% (3)

where C0 and Ct are the MB concentrations (mg/L) at the
initial time and at time t, V (L) is the volume of the MB
solution, and m (g) is the mass of the porous HCG-based
AAM.
The sorption response is time-dependent, and sev-

eral models, including pseudo-first-order (PFO) kinetic,
pseudo-second-order (PSO) kinetic, intra-particle diffu-
sion (IPD),Weber andMorris sorption, andBohart–Adams
and Thomas sorption models, have been proposed to
describe adsorption kinetics.63 The influence of contact
time on the amount of MB adsorbed was evaluated,
and the adsorption kinetics data were fitted with the
PFO (Equation 4), PSO (Equation 5), and IPD models
(Equation 6)64:

ln (𝑞𝑒 − 𝑞𝑡) = ln𝑞𝑒 − 𝑘1𝑡 (4)

𝑡

𝑞𝑡
=

1

𝑘2𝑞
2
𝑒

+
𝑡

𝑞𝑒
(5)

𝑞𝑡 = 𝑘𝑖𝑑 𝑡
1∕2 + 𝐶 (6)

where qe is the adsorption amount (mg/g) at equilibrium,
qt is the adsorption amount at time t (min), k1 (min−1),
and k2 (g/(mg min)) are the PFO and PSO rate constants,
respectively, and kid (mg/g min1/2) and C (mg/g) are the
intra-particle diffusion constants in the IPDM.
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LI et al. 1477

Among various regeneration/desorption methods (acid,
alkali, salt solution, thermal treatment, complex, etc.),
thermal regeneration is known as the most effective and
economical procedure and has been widely used with
AAM/geopolymer adsorbents.30,65–70 To explore the fea-
sibility of reusing the foamed samples as adsorbents,
all AAM monoliths with different amounts of oil con-
tent were heated at 5◦C/min to 400◦C for 2 h in a
muffle furnace to thermally degrade MB. The adsorp-
tion capacities of the regenerated samples were studied
under the same conditions as the initial tests. The regen-
eration cycle and tests were conducted four consecutive
times.35

3 RESULTS AND DISCUSSION

3.1 X-ray diffraction and infrared
spectroscopy analysis

The development of the matrix after alkali activation was
investigated by combining XRD and FTIR analyses, and
the results are shown inFigure 2. Figure 2A shows theXRD
patterns of AAM samples produced without oil (sample
S0) and the starting coal gangue (HCG). Sharp diffrac-
tion peaks representing quartz (SiO2, PDF 00-046-1045)
and hematite (Fe2O3, PDF 00-033-0664), accompanied by
a weak peak of muscovite (KAl3Si3O10(OH)2, PDF 01-
075-0948) and cristobalite (SiO2, PDF 01-082-0512), were
observed in HCG, with a particularly sharp quartz peak at
a 2θ value of∼26.6◦. The broad halo between 20◦ and 35◦ in
the X-ray pattern of the AAM indicates the formation of an
amorphous sodium aluminosilicate gel (N–A–S–H) during
the synthesis of the material.71,72 As shown in Figure 2A,
the main crystalline phases of the HCG and pure AAM
powders are essentially identical, with quartz andhematite
being themost abundant phases. The density of the peak at
∼21.8◦ is attenuated, possibly due to the synergistic effect
of alkali activation andmicrowave activation as the sodium
silicate glass forms.73–76
A phase transformation of natural coal gangue upon

geopolymerization can be observed in the FTIR spectrum
in Figure 2B. The characteristic bands of HCG are simi-
lar to those of calcined coal gangue in the literature.77,78
The characteristic absorption bands at 1091, 797, 778, and
695 cm−1 are ascribed to quartz.79–81 The broad peak
at 3441 cm−1 is the characteristic of O–H asymmetric
stretching (3000–3700 cm−1), which is associated with
the formation of hydrated compounds.72,82,83 The bending
vibration of O–H is observed at ∼1626 cm−1, indicating
the presence of water molecules.84–86 The strong absorp-
tion band at 1091 cm−1 corresponds to the antisymmetric
stretching vibration of Si–O, whereas the peaks at 797, 778,

F IGURE 2 X-ray diffraction (XRD) patterns (A) and
Fourier-transform infrared (FTIR) spectra (B) of hypergolic coal
gangue and alkali-activated material (AAM) powders

and 695 cm−1 indicate the presence of the Si–O–Si bond of
quartz.87,88 The band at 797 cm−1 can also be attributed to
the vibration of sixfold coordinated Al–O, which suggests
that the raw powder contains octahedral six-coordinate
AlO6.89
After the alkali activation reaction, the sample shows

bands at 3594 and 1671 cm−1, which are attributed to O–H
from adsorbed atmospheric water 61. In addition, the peak
at 1452 cm−1 is assigned to theO–C–O stretching of sodium
carbonate formed by the reaction between sodium silicate
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F IGURE 3 (A) Total porosity and compression strength of the porous specimens (S0–S5); (B) the compression strength and the total
porosity data of this study (samples S0–S5) (●) and previous data25,34,35,60,91,98–101 for high-porosity (>85%) samples prepared by different
preparation methods. ASRW, aluminum scrap recycling waste; BM, bottom ash; DFM, direct foaming method; DIWM, direct ink writing
method; DL, dolomite; EPFM, embedding porous fillers method; FA, fly ash; MFM, microwave foaming method; MK, metakaolin; RETM,
reaction emulsion template method; RM, replica method; SPW, steel-plant waste

and air 90,91. The shift of the Si–O peak located at 1091 cm−1

to a lower wavenumber (1067 cm−1) and the broadening
of the band which corresponds to the asymmetric stretch-
ing vibrations of the Al–O–Si and Si–O–Si bonds 92,93

jointly provide evidence of the occurrence of a geopoly-
merization reaction.94,95 As expected, there are no obvious
changes in the peaks at 797, 778, and 695 cm−1, attributed to
the quartz crystalline phase, which is consistent with the
XRD data.

3.2 Porosity and mechanical strength

Figure 3 and Table S1 show the total porosity (ε, vol%),
relative density (ρa, g/cm3), and compression strength (σ,
MPa) of the samples with various oil loadings and with-
out oil. There are no significant fluctuations in the ρa and
ε values, probably because the porosity was generated by
microwave foaming and not by frothing (i.e., in situ gener-
ation of bubbles rather than the mechanical introduction
of gas into the slurry). However, we observed that the intro-
duction of oil into the system led to a strong decrease
in the compression strength, independent of its amount.
The decrease in σ can likely be explained by a decrease
in the alkaline concentration due to the saponification of
the oil, leading to the formation of soap molecules and
glycerol.96 Indeed, previous studies56,34,97 also showed that
the alkaline concentration has a significant effect on the σ
of samples produced by different foaming routes. Another
reason for the observed decrease in strength with the

introduction of oil is related to a change in microstructure,
with an increase in the presence of voids within the cell
walls and struts when oil is introduced (see Section 3.3).
The foams obtained by the combined microwave foam-
ing and reactive emulsion templating route exhibited high
total porosity with acceptable compression strength.

3.3 Pore microstructure

Figure 4 shows optical images of porous specimens pre-
pared with (samples S1–S5) or without (sample S0) oil.
A nonhomogeneous cellular structure, also reported in
previous studies56,57,102 concerning microwave foaming,
is observed for all samples. The microstructure com-
prises large cells (0.5 up to 2–5 mm), as shown in
Figure 4A,B,D,E,G,H,J,K,M,N,P,Q, and small pores (less
than 0.5 mm) present in the cell walls and struts (see
Figure 4C,F,I,L,O,R). The number of small pores seems
to increase with increasing oil content. The small pores
observed in the sample without oil (S0) could be due to
inadequatemicrowave foaming,56,57 whereas those present
in the samples produced with oil (S1–S5) can be explained
by the removal of oil droplets and/or the effect of surfactant
molecules generated by the saponification reaction. Previ-
ous studies of microwave foaming56,57 suggest that sodium
silicate acts not only as an alkaline activating agent but also
as a foaming agent, and small pores are also observed in
samples produced by the method of direct foaming plus
reactive emulsion templating.34
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LI et al. 1479

F IGURE 4 Optical images (A, B, D, E, G, H, J, K, M, N, P, and Q) and SEM images (C, F, I, L, O, and R) of porous alkali-activated
materials (AAMs) (A, E, I, M, and Q) with various amounts of oil (samples S1–S5) or without oil (sample S0)
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1480 LI et al.

F IGURE 5 Removal efficiency as a function of time of (A) various bulk porous adsorbents (samples S0–S5), and (B) by the same
adsorbents after the fourth regeneration cycle; (C) removal efficiency and adsorption amount at equilibrium (qe); (D) as a function of the
regeneration cycle by various bulk porous adsorbents (samples S0–S5)

3.4 Methylene blue adsorption tests

3.4.1 Effect of contact time

The time-dependent performance of the absorption of MB
from an aqueous phase was assessed on bulk porous adsor-
bents manufactured with different amounts of oil, on a
timescale ranging from0 to 3600min, with a fixedMB con-
centration of 40 mg/L and a constant geopolymer dosage
(∼0.8 g). A typical trend for the removal efficiency (E)
versus contact time, which tracks the adsorption rate,
is shown in Figure 5A,B, whereas parts (C) and (D) of
Figure 5 show the removal efficiency and the adsorption
amount at equilibrium as a function of the number of
regeneration cycles, respectively.
It is evident that the adsorption efficiency of MB on

the PAAMs increased with the sorption time. Significant
MB adsorption occurred within the first 720 min, owing
to the availability of more active adsorption sites on the
porous adsorbents at the beginning of adsorption. Previous
studies103,104 demonstrated that the adsorption capacity
is mainly determined by the ion exchange of Na+ in
PAAMnetworks withMBmolecules and interaction of the

sorbent with the adsorption active sites (hydroxyl groups
[−OH] connected to the Si tetrahedra).
During the initial cycle, the MB removal rate gradually

decreased with increasing adsorption time as a result of
the reduction of active sites. In addition, the removal effi-
ciency (E) reached an equilibrium level (>80% for some
samples) at ∼720 min and then remained virtually con-
stant up to 60 h of testing. At this equilibrium time, the
value of E for some samples was as high as 95.3%, and a
similar value was also reached even after four regenera-
tion cycles. Therefore, regeneration had a limited effect on
removal efficiency, simply prolonging the time required to
achieve adsorption equilibrium.

3.4.2 Kinetics of adsorption

The adsorption of MB was analyzed using time- and
concentration-dependent models that represent adsorp-
tion kinetics. Several models have been reported for
describing the kinetics of solid–liquid adsorption to inves-
tigate the rate-limiting step of the sorption process. Based
on the initial MB adsorption data, three major models
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F IGURE 6 (A) Pseudo-first-order kinetic plot and (B) pseudo-second-order kinetic plot for initial methylene blue (MB) adsorption

(PFO, PSO, and IPD) were applied, using linear regression
analysis to determine the fit of the models.
The fitting of the MB adsorption experimental data is

shown in Figures 6 and S1, and the corresponding kinetic
adsorption parameters, the correlation coefficients (R2),
and the calculated adsorption amount (qe,cal) are reported
in Table 2. As seen in Table 2, the R2 of the PFO kinetic
model was between 0.041 and 0.959, that of the IPDmodel
was between 0.396 and 0.996, whereas that of the PSO
kinetic model was between 0.988 and 0.999 with most R2
values greater than 0.99. This demonstrates that the PSO
model best fits the experimental data. In addition, qe,cal
of the PSO kinetic model was in close agreement with
the experimental value (qe,exp). Therefore, we posit that
the adsorption of MB was dominated by chemisorption,
and the addition of oil did not significantly change the
solid–liquid adsorption mechanism in the materials. Simi-
lar behavior was reported for the adsorption kinetics ofMB
onto geopolymers,105–107 spent tea leaves,108 and oil palm
(Elaeis guineensis).109

3.4.3 Effect of oil content

Figure 7A,B shows theE andQt values of the foam samples
as a function of the amount of oil. It was rather surpris-
ing to observe that the MB uptake and Qt by the PAAMs
significantly increased with an increase in oil content for
all the specimens except S1. Apparently, a limited addi-
tion (3.14 wt%) of oil reduced the adsorption capacity of
the foams, with decreases in E and Qt of 28.1% and 23.2%,
respectively. However, the adsorption performance was
significantly enhanced when the oil content was raised to
6.29 wt%, and in particular, the adsorption capacity was
increased by 48.4%, to almost the same as the maximum
value of 10.7 mg/g (S3). Moreover, the addition of oil dis-
tinctly promoted the removal efficiency. For example, a
21.8% increase in the MB removal efficiency was observed

for sample S4 when the amount of oil increased from 0%
to 12.59%. The very high MB removal efficiency (95.3%)
of S4 revealed a strong interaction between the available
MB molecules in solution and the AAM active sites. The
positive effect of the use of oil during the manufacture
of the samples remained after four regeneration cycles,
and the Qt values of samples S4 and S5 remained almost
unchanged. In particular, the specimenwith 12.59% oil (S4)
exhibited the best adsorption performance.
Samples with andwithout oil (S4 and S0)were subjected

to nitrogen adsorption–desorption tests to understand the
effect of oil on the BET surface area as well as the BJH des-
orption average pore size and pore volume (see Table 2).
The addition of oil did not significantly change the nitro-
gen adsorption–desorption isotherms (see Figure 8A,C),
which were all type IV and presented a vertical asymp-
totic profile at high values of P/P0.110 In addition, the type
H3 hysteresis loops suggest that the pores are nearly slit-
like.95,111 Initially, the monolayer changed to a multilayer
on the pore surface, displaying a plateau at medium–low
pressure (P/P0 = 0.2–0.8).112,113 The sample synthesized
without oil (S0) possessed mesopores with an average
dimension of 2.4 nm andmacropores with a broad size dis-
tribution from 10 to 260 nm, with a single peak centered
at 121 nm. With the addition of oil, the small mesopores
(2.4 nm) disappeared, and the number of larger pores, with
sizes between 20 and 40 nm, gradually increased. This is
consistent with the observed difference in pore volume in
the samples, with that for S4 sample (0.029 cm3/g) being
10 times larger than that of the S0 sample (0.003 cm3/g),
while the surface area and average pore size decreased (see
Table 3). The larger pore volume developed with the help
of oil provided numerous additional active sites capable of
binding to the MB molecule.
Table 4 compares the MB uptake (Qe) and removal (E)

of various foams (bulk-type adsorbents) reported in the
literature. The maximum MB removal efficiency (95.3%)
was higher than that of several other adsorbents but lower
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1482 LI et al.

F IGURE 7 E and Qt values for methylene blue (MB) adsorption on porous samples (as received) manufactured with different amounts
of oil (samples S0–S5) (A), and after the fourth regeneration cycle (B)

F IGURE 8 N2 adsorption–desorption curve (A and C), pore size distributions and cumulative pore volume (B and D) of selected porous
alkali-activated materials (AAMs) (samples S0, S4)

TABLE 3 Brunner–Emmett–Teller (BET) surface area,
Barrett–Joyner–Halenda (BJH) desorption pore volume, and BJH
desorption average pore size of selected samples (S0, S4)

Sample
BET surface
area (m2/g)

BJH desorption
pore volume
(cm3/g)

BJH desorption
average pore size
(nm)

S0 0.9442 0.002686 9.8909
S4 1.8904 0.028585 20.5017

than that of metakaolin/glass geopolymers.104 However,
the maximum MB uptake here (9.4 mg/g) was much bet-
ter than that reported by Rożek et al.,104 as a cumulative
adsorption amount of 49.4 mg/g was reached. These data
illustrate the tremendous potential of our samples as inno-
vative monolithic adsorbents that can be directly applied
in the form of packed beds.
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LI et al. 1483

TABLE 4 Methylene blue (MB) uptake (Qe) and removal (E) of various foams (bulk-type adsorbents) reported in the literature (uptake
(Qe) was extrapolated from the experimental data)

Rawmaterial Adsorbent shape C0 (ppm) Qe (mg/g) E (%) Ref.
Metakaolin +
biomass fly ash

Disc
(d = 22 mm;
h = 3 mm)

50 15.4 (1st)
109.6 (6th)

64.8 (1st)
48.4 (6th)

114

Bauxite residue Disc
(d = 20 mm;
h = 3 mm)

50 17.3 (1st)
39.2 (5th)

17.3 (1st)
39.2 (5th)

65

Metakaolin +
glass

Monolithic
(15 × 15 × 5 mm)

50 4.9 (1st) ∼100 (1st) 104

Coal fly ash – 50 2.97 (1st) – 115
Hypergolic coal
gangue

Monolithic
(25 × 15 × 5 mm)

40 9.4 (1st)
49.4 (4th)

95.3 (1st)
83.9 (4th)

This study
(S4)

F IGURE 9 Proposed adsorption mechanisms of methylene blue (MB) on hypergolic coal gangue (HCG)-based porous alkali-activated
materials (AAMs)

3.4.4 Regeneration tests

All specimens manufactured using different oil contents
were used for five adsorption experiments (including the
initial adsorption) and were regenerated by thermal treat-
ment at 400◦C to promote the thermal decomposition of
the adsorbed MB. The results of the regeneration tests are
shown in Figure 5C,D.
After the first regeneration, a decrease in MB removal

efficiency and a loss in uptake were observed compared
with the initial adsorption test in the great majority of
specimens, highlighting the negative impact of the heat

treatment, which was almost inevitable. This decline can
be explained by a decrease in the number of active sites
due to mass loss and incomplete degradation30 of MB after
thermal treatment. However, a rebound in the adsorption
performance was observed after the second cycle, which
is related to an increase in porosity caused by the heat
treatment.114 Subsequently, a slight reduction in the MB
uptake of the samples was observed. Nevertheless, the
decrease in MB absorption and removal efficiency was
relatively minor, clearly demonstrating stable adsorption
behavior after multiple regeneration cycles. Surprisingly,
the samples produced with the addition of oil could
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1484 LI et al.

withstand the negative effects of heat treatment, at least
to a certain extent. The adsorption amount of S4 was
slightly superior to that without regeneration (from 9.4 to
10.0 mg/g), demonstrating the possibility of reusing this
innovative adsorbent for wastewater treatment.

3.4.5 Adsorption mechanism

MBadsorption onto PAAMs in anMB solution involves the
following steps:MBmoleculesmigrate from the solution to
PAAMs;MBmolecules diffuse through the boundary layer
to the surface of the PAAMs; MB molecules are adsorbed
onto the active sites of the surface; and MB molecules dif-
fuse to the inner pores of the adsorber.105,116 Figure 9 shows
the adsorption mechanism of MB on PAAMs. The possible
adsorption mechanisms associated with MB onto PAAMs
can be explained considering several aspects. The first
aspect is the ion exchange properties of MB cations and
Na+ charge-balancing cations in the PAAM network.117,118
The second is related to n–π interactions between the
structure of PAAMs and theMB-conjugated structure.117,118
A third aspect takes into account the electrostatic inter-
actions between the positively charged sites of MB+ and
the negatively charged tetrahedral Al sites.86,105 Finally,
hydroxyl groups (−OH) attract the N or S atoms of the MB
dye to form hydrogen bonds.69,119

4 CONCLUSIONS

Porous HCG-based AAMs were manufactured for the first
time with the addition of expired soybean oil using a novel
combined saponification/microwave foaming route. The
following points can be made in summary:

1. The produced foams exhibited high total porosity (85.9–
89.0 vol%) and acceptable compression strength (0.46–
1.1 MPa).

2. Increasing the oil content caused a decrease in the
compression strength, but a substantial increase in the
adsorption characteristics. Adsorption capacity up to
9.4 mg/g and a high removal efficiency about 95.3% for
MB were realized. There was no significant decrease in
the adsorption properties after 1–4 regeneration cycles.

3. Foams with coal gangue (100 wt%) as the raw mineral
material can be employed as adsorbing components for
wastewater treatment, providing a novel strategy for
upcycling solid waste and expired oil.

The online version of this article contains supplemen-
tary materials (Table S1 and Figure S1), which are available
to authorized users.
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