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Abstract
Purpose: Despite the significant physical differences between magnetic res-
onance imaging (MRI) and computed tomography (CT), the high entropy of
MRI data indicates the existence of a surjective transformation from MRI to
CT image. However, there is no specific optimization of the network itself in pre-
vious MRI/CT translation works, resulting in mistakes in details such as the skull
margin and cavity edge. These errors might have moderate effect on conven-
tional radiotherapy,but for boron neutron capture therapy (BNCT), the skin dose
will be a critical part of the dose composition. Thus, the purpose of this work is
to create a self -attention network that could directly transfer MRI to synthetical
computerized tomography (sCT) images with lower inaccuracy at the skin edge
and examine the viability of magnetic resonance (MR)-guided BNCT.
Methods: A retrospective analysis was undertaken on 104 patients with brain
malignancies who had both CT and MRI as part of their radiation treatment
plan. The CT images were deformably registered to the MRI. In the U-shaped
generation network, we introduced spatial and channel attention modules, as
well as a versatile “Attentional ResBlock,” which reduce the parameters while
maintaining high performance. We employed five-fold cross-validation to test
all patients, compared the proposed network to those used in earlier studies,
and used Monte Carlo software to simulate the BNCT process for dosimetric
evaluation in test set.
Results: Compared with UNet, Pix2Pix, and ResNet, the mean absolute error
(MAE) of self -attention ResUNet (SARU) is reduced by 12.91, 17.48, and
9.50 HU, respectively. The “two one-sided tests” show no significant difference
in dose-volume histogram (DVH) results. And for all tested cases, the average
2%/2 mm gamma index of UNet, ResNet, Pix2Pix, and SARU were 0.96 ± 0.03,
0.96 ± 0.03, 0.95 ± 0.03, and 0.98 ± 0.01, respectively. The error of skin dose
from SARU is much less than the results from other methods.
Conclusions: We have developed a residual U-shape network with an attention
mechanism to generate sCT images from MRI for BNCT treatment planning with
lower MAE in six organs. There is no significant difference between the dose
distribution calculated by sCT and real CT. This solution may greatly simplify
the BNCT treatment planning process, lower the BNCT treatment dose, and
minimize image feature mismatch.
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1 INTRODUCTION

Boron neutron capture therapy (BNCT) is a kind of
binary radiotherapy modality, which is featured on
the cell targeting by the tumor-targeting drugs (i.e.,
10B drug) and the irradiation of thermal/epithermal
neutrons.1,2 Treatment planning is essential for BNCT.
Typically, the planning system uses computed tomogra-
phy (CT) images for radiation dose calculation.However,
taking CT pictures exposes patients to ionizing radi-
ation to some extent. Multiple exposures considerably
raise the risk of cancer, with particularly dangerous
consequences for pregnant women,patients with hyper-
thyroidism, and those with impaired liver and kidney
functions. On the other hand, the acquisition of boron
concentration distribution is one of the crucial phases in
BNCT, as boron dose is the main component of BNCT
dose composition. Magnetic resonance imaging (MRI)
has some advantages over other imaging modalities; for
example, less invasiveness, more versatility with fewer
restrictions of a boron–gadolinium compound, and can
also provide functional and morphological information
without using radiation, which is helpful for treatment
planning.3–8

However, MRI does not provide direct information
for dose calculation as CT imaging before BNCT ther-
apy.Despite the significant physical differences between
MRI and CT, the high entropy of MRI data indicates
the existence of a surjective transformation from MRI
to CT image. The existing methods to generate syn-
thetical computerized tomography (sCT) by MRI can be
divided into three categories: density-based partition-
ing, atlas-based, and machine learning (ML) methods
(including classical methods and deep learning meth-
ods). If sCT images can be synthesized based on MRI
to calculate dose deposition, CT scanning can be omit-
ted, the clinical workflow of BNCT can be simplified,and
the mismatch between boron drug distribution images
and CT images can be avoided, which can significantly
reduce the system uncertainty.

The UNet proposed by Ronneberge and coworkers
has been used for tasks such as brain, head and neck,
abdomen, and so forth, and has achieved encouraging
results.9–16 Another image conversion network based
on conditional GAN (cGAN) named Pix2Pix is also
commonly utilized.17–20 Because cGAN may employ
condition information to guide image generation, the
input image can be used as a condition in image trans-
formation to learn the mapping between the input and
output samples. It has been widely used in background
removal, image repair, style transfer, and other fields.

However, there is no specific optimization of the
network itself in previous MRI/CT translation works,
resulting in huge mistakes in details such as the skull
margin and cavity edge. These errors might have mod-
erate effect on conventional radiotherapy. But for BNCT,
the skin dose will be a critical component of the dose

composition.21 Therefore, in this work, we proposed
a new deep attention mechanism network using the
deep learning method to generate CT images directly
from T1-weighted MRI, to obtain a better edge predic-
tion effect. Furthermore, we evaluated the performance
impact of the synthesized CT on BNCT from dosimetry
using Monte Carlo simulations.

2 MATERIALS AND METHODS

2.1 Data acquisition and preprocess

We collected MRI and CT data from 104 patients (male:
43, female: 61) with brain malignancies at the Jiangsu
Cancer Hospital from March 2021 to March 2022. The
ages range from 18 to 83 years old, the median age
of all patients is 55. All the data have been authorized
by the Ethics Committee of Jiangsu Cancer Hospital
(ID: 2022011). The interval between CT and MR scans
for each patient is within 1 week. Simultaneously, pre-
training data from the Retrospective Image Registration
Evaluation project (RIRE)22 is used. The turning angle
of the MRI excitation pulse is 10◦, TE is 4 ms and TR
is 10 ms. The MRI image dimension ranged from 22 ×

256 × 256 to 117 × 256 × 256, and the corresponding
pixel size from 6 × 0.4 × 0.4 to 0.3 × 0.4 × 0.4 mm. The
CT images are obtained with tube voltage of 120 kVp
and pixel size of 1 × 0.4 × 0.4 mm.

We used T1-weighted MRI and CT images as the
input and output of the neural network, respectively,
because T1-weighted MRI shows the difference in tis-
sue T1 relaxation (longitudinal relaxation),which is more
conducive to observing the anatomical structure.23 The
training set and verification set consisted of 94 patients,
and the test set consisted of the remaining 10 patients.
To get more patients into the validation phase, we sep-
arated the original data (excluding the test set) into
five groups, utilized each subset data as validation set,
and the remaining four sets of subset data as training
set, and trained five times in total to get the five-fold
cross-validated errors.

As the original MRI and CT images are not regis-
tered, the Insight Segmentation and Registration Toolkit
(ITK) is used to convert the original MHD files into NIfTI
format.24 We performed symmetric normalization25

(rigid + affine + deformable transformation, with mutual
information as optimization metric) for MRI and CT, and
the registration is completed when the maximum num-
ber of iterative steps or convergence conditions are met.
To avoid the intensity inhomogeneity of MRI affecting
the prediction performance of the neural network, we
use N4 bias field correction algorithm to further correct
MRI.At the same time, the Otsu threshold segmentation
algorithm is used to extract the mask of the head MRI
and separate the head region from other nonanatomi-
cal background regions in MRI and CT images. In the
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F IGURE 1 Schematic diagram of the channel attention module, spatial attention module, and depth separable convolution (from top to
bottom)

CT image, set all pixels outside the masked area to air
(CT value equal to −1000 HU) to avoid the adverse
effect of treatment bed, bandage, and other irrelevant
components on model training.

We additionally setup image operations like random
rotation (−45◦ to 45◦), random flip (horizontal flip or
vertical flip), stretching, and cropping when loading the
dataset. The benefit of this is that the neural network’s
input training data are not exactly same in different
epoch, which considerably reduces overfitting, as evi-
denced by later results. Finally, the preprocessed MRI
and CT files are converted into Numpy format and fed
into Pytorch.26 To facilitate network training and save
GPU memory, 512 × 512 CT images are resampled to
256 × 256.

2.2 Network architectures

To better realize the synthesis task from MRI to
sCT, we introduce channel attention mechanism and
dimensional attention mechanism module to U-shaped
network architecture. A neural network module called
“Attentional ResBlock” is proposed to optimize edge
prediction while reducing the network parameters. To
validate the superiority of the proposed network, we
compare it with several popular frameworks (UNet,
Pix2Pix,27 ResNet28). All training and testing are imple-
mented on two NVIDIA TITAN V 12GB graphics cards
using the deep learning framework Pytorch.

2.2.1 Attentional mechanism

Attention mechanism is a special structure embedded
in the ML model, which is used to automatically learn
and calculate the contribution of input data to output
data. The weight of the attention mechanism is deter-
mined by the weighted average of the concealed states
of all the encoder’s time steps. The decoder adjusts
these weights, known as Attention Weights,at each time
step, allowing it to focus on different parts of the input
sequence at different time steps. Inspired by CBAM,29

we introduced the attention mechanism into U-shaped
neural network for MRI/CT translation. As shown in
Figure 1, the attention mechanism module designed
for this work is mainly divided into two parts: channel
attention module (CAM) and spatial attention module
(SAM).

2.3 Channel attention module

Global average pooling and maximum pooling are
used to utilize the high-level and low-level information,
respectively. Figure 1 contains the schematic diagram
of the channel attention module. When the input is
a feature map of H × W × C, two-channel images of
1 × 1 × C are first obtained through global average
pooling and maximum pooling of space, respectively.
They are then fed into a multilayer perceptron (MLP).
Then, the weight coefficient is obtained by adding the
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F IGURE 2 Schematic diagram of the training and testing of the model: left training stage, right testing stage. (the yellow part is the SARU
network structure diagram, grey arrow: jump connection, blue arrow: basic convolution layer and batch normalization and LeakyReLU, yellow
arrow: attention ResBlock, green arrow: Max pooling, pink arrow: ConvTranspose3d and batch normalization and LeakyReLU, red arrow: 1 × 1
convolution, CAM: channel attention module, SAM: spatial attention module, DSC: depthwise separable convolution)

two features through a Sigmoid activation function.
Finally, we multiply the weight coefficient Vc and the
original feature F to get the new feature map after
scaling. Equation (1) shows the full stages of CAM in
detail.

Vc (F) = 𝜎 (MLP (MeanPool (F)) + MLP (MaxPool (F)))

= 𝜎(W1
(
W0

(
FC

mean
))
+
(
W1

(
W0

(
FC

max
)))

(1)

2.4 Spatial attention module

After CAM, we introduce SAM to let the network learn
which features are meaningful. Figure 1 also contains
the schematic diagram of SAM.Similar to channel atten-
tion, given a feature map of H × W × C, two H × W × 1
images are obtained by average pooling and maximum
pooling of one channel dimension, respectively, and the
two images are spliced together according to the chan-
nel.Then, the weight coefficients are obtained through a
tiny convolutional neural network (CNN).Finally, the new
feature can be obtained by multiplying the weight coef-
ficient versus the original feature graph F, as given by
Equation (2):

Vs (F) = 𝜎 (f ([MeanPool (F) , MaxPool (F)]))

= 𝜎
(
f
([

FS
mean ; FS

max
]))

(2)

2.4.1 Attentional ResBlock

We introduced the CAM and SAM into U-shaped neural
network. We also added additional residual links, which
will make the attention block learn the residuals between
distinct feature maps instead of the entire feature map,
to avoid overfitting as much as possible while speeding
up the network’s convergence.Finally,we employ depth-
wise separable convolution (DSC) to reduce the number
of parameters in the network, as illustrated by the red
arrow in Figure 2.

The DSC consists of a combination of depthwise
(DW) and pointwise (PW) components to extract the
feature map, which greatly reduces the number of
parameters compared to the conventional convolution
operation. The principle of deep separable convolution
is shown in Figure 1. This results in fewer mathematical
operations and fewer parameters than nonseparable
convolution.30 Trebing et al. created a UNet using DSC
instead of regular convolution and their model had eight
times fewer parameters than the original UNet imple-
mentation,and they showed that their model was able to
have similar performance to the UNet on segmentation
tasks.31

2.4.2 Self -attention ResUNet

Self -attention ResUNet (SARU) is formed by incor-
porating the Attentional ResBlock into a U-shaped
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TABLE 1 Hyperparameters of the networks

Hyperparameter Value

Batch size 8

Loss torch.nn.L1Loss

Optimizer torch.optim.Adam

scheduler ReduceLROnPlateau

Learning rate 0.0002

Momentum term of adam 0.5

num_threads 8

Image preprocess rotate and resize and crop

init type kaiming

neural network; Figure 2 depicts the network struc-
ture. The whole generator network contains a total
of 16.212 M trained parameters to realize the com-
plex end-to-end mapping function and converts the
input MRI into the corresponding sCT image. Learning
the end-to-end mapping function requires optimization
of network parameters by minimizing losses or pre-
diction errors between the predicted image and the
corresponding real CT image. In order to quantitatively
reflect the advantages of SARU,we simultaneously train
three other network models, which are UNet, ResNet,
and Pix2Pix. Pix2Pix uses UNet as the backbone and
PatchGAN as discriminator.

We employ the mean absolute error (MAE) as the loss
function for generator networks.32 For Pix2Pix, the loss
function consists of generator loss and discriminator
loss.27 Due to GPU memory limitations and limited train-
ing data in this study,3D network training is not extended
considering that 2D slices already contain rich context
information.Except for the network framework,all hyper-
parameters are the same for all networks in Table 1.The
batch size is set to eight, Adam is the optimizer, and the

momentum term is set to 0.5.And the initial learning rate
is set to 0.0002, and is reduced by a factor of 2 when
the error on the validation set stops falling.

2.5 Monte Carlo simulation and dose
calculation for BNCT

Monte Carlo toolkit Geant433 is used to carry out sim-
ulation and quantitatively evaluate the bias of sCT
generated by the neural network in dose calculation.
Based on the CT data of selected patients, 24 differ-
ent tissue materials are divided according to CT values
based on the Schneider method.34 The voxel size is set
as 1 × 1 × 1mm3,and the boron concentration in the skin
of the body model is set as 25 ppm. The default neutron
irradiation method used in the simulation is top–down
(or left–right), the distance between source and skin is
from 5 to 10 cm, and the neutron source has a radius
of 6 cm. The ratio between the total neutron current and
the total neutron flux is 0.7,35 and the energy spectrum
of the neutron source is set to be the same as the neu-
tron source of the Harvard-MIT reactor.36 The neutron
source spectrum and the schematic diagram of neutron
irradiation mode are shown in Figure 3. All parameter
settings are related to the location and size of tumors in
different cases.

Considering the influence of calculation time, the
number of neutrons simulated of each patient is 2 ×
108 to ensure enough uncertainties as in previous
studies.37 We simulated the treatment process of one
of the patient 10 times to calculate the standard devi-
ation of the 10 dose results, and the uncertainty was
1.72% (head area only) and 0.74% (>10% maximum
dose). The doses analyzed here are all 30-minute RBE
doses.38 The average MAE results of various organs in
different networks are shown in Figure 3. Compared to
other networks, the MAE of SARU dropped significantly.

F IGURE 3 Neutron source spectrum (a) and the schematic diagram of neutron irradiation mode (b)
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F IGURE 4 Average mean absolute error (MAE) (a) and ME (b) results of various organs in different networks

3 RESULT

3.1 Image quality assessment of sCT
images

The MAE and mean error (ME) distributions of each
organ are given in Figure 4. As shown in Table 2,
the MAE of SARU results in the head region is
67.81 ± 24.31 for all 104 cases (five-fold cross-
validation), while UNet, ResNet, and Pix2Pix results are
80.73 ± 24.68, 77.31 ± 26.73, and 85.29 ± 23.23,
respectively. With the datasets and model parame-
ters in this study, UNet and Pix2Pix had slightly
lower or similar MAE than previous studies.15,18,39–44

At the same time, Table 2 shows that SARU gen-
erally had a better prediction effect for the seven
organs at risk (i.e., eye, lens, optic nerve, brain, brain
stem, and skull) that were studied than other mod-
els with the same datasets. The “previous research”
in Table 2 represents the results in previous stud-
ies. Due to the differences in the original data and
preprocessing methods, the results are not exactly

the same. The more intuitive results are shown in
Figure 5.

3.2 Dose assessment

The neutron source is set up and BNCT simulation
is conducted on the test cases with different irradia-
tion fields to obtain the three-dimensional distribution of
boron dose. Detailed dose results are given in Table 3.
For GTV and skin,the dose errors calculated by sCT pro-
duced by SARU network are smaller than UNet,ResNet,
and Pix2Pix. The dose errors of BNCT from different
networks are given in Table 4. The TOST-P (two one-
sided test p-value)45,46 shows no significant difference
in DVH results. And for all tested cases, the average
2%/2 mm gamma index of UNet, ResNet, Pix2Pix, and
SARU were 0.96 ± 0.03, 0.96 ± 0.03, 0.95 ± 0.03, and
0.98 ± 0.01, respectively. DVH images of test cases
are presented in Figure 6. And as shown in Figure 7,
SARU’s DVH curve is closer to the ground truth than
other networks.
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TABLE 2 Mean absolute error (MAE) results of head, brain, and skull for different backbones in 104 patients

Head Skull Brain
MAE ME MAE ME MAE ME

Backbone (mean ± std/HU) (mean± std/HU) (mean ± std/HU) (mean ± std/HU) (mean ± std/HU) (mean ± std/HU)

UNet 80.73 ± 24.68 −2.84 ± 21.20 179.96 ± 47.29 −123.02 ± 54.62 17.62 ± 25.51 −3.79 ± 6.99

ResNet 77.31 ± 26.73 0.34 ± 21.73 158.93 ± 48.08 −95.86 ± 49.86 17.06 ± 25.52 −3.87 ± 6.02

Pix2Pix 85.29 ± 23.23 1.48 ± 21.43 174.24 ± 41.61 −110.41 ± 51.32 20.30 ± 26.11 −3.97 ± 8.49

SARU (ours) 67.81 ± 24.31 −1.45 ± 21.72 143.97 ± 45.83 −84.63 ± 48.57 14.90 ± 21.21 −4.29 ± 5.48

Previous research

UNet
Alvarez Andres et al.15

90 ± 21 – 199 ± 54 – – –

Pix2Pix
Hemsley et al.18

94.60 ± 17.20 – 237 ± 31 – – –

CNN
Alvarez Andres et al.15

81 ± 22 – 228 ± 63 – – –

CNN
Han et al.14

84.8 ± 17.3 – – – – –

cGAN
Kazemifar et al.20

73 ± 17 – – – – –

F IGURE 5 The prediction results of the transverse, sagittal, and coronal planes. Blue and red frame lines are the proportionally enlarged
images of some areas.

4 DISCUSSION

MRI has the advantages of no ionizing radiation,
clear imaging of soft tissue, and real-time imaging. It
can be used for boron concentration estimation and
pharmacokinetic evaluation before the treatment of
BNCT. MRI is increasingly being incorporated into the
planning and implementation of radiotherapy. In this
work, we provide a CNN called “SARU”with an attention
mechanism that can be trained end-to-end for MRI/CT
translation in MR-only BNCT treatment planning. To
prevent the network from overfitting, deep separable
convolutions and specialized residual connections are

used. By introducing the attentional mechanism mod-
ule, SARU demonstrates a good prediction effect at the
edges of images and the junction of distinct organs.The
quality of sCT prediction is considerably improved when
compared to other networks such as ResNet, UNet, and
Pix2Pix, and MAE is lowered.

Network parameters should not be very large for med-
ical image translation tasks, as bloated networks are
prone to major overfitting. But an overly simple network
is difficult to anticipate accurately. Compared with other
methods to generate sCT, the model based on the deep
attention mechanism proposed in this paper has supe-
rior performance. The viability of T1w-weighted MRI
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TABLE 3 Comparison of dose-volume histogram (DVH) parameters of plans on synthetic and planning computed tomography (CT) for 10
testing patients

DVH parameter

Real CT
Mean ± SD
(95% confidence interval)

sCT (SARU)
Mean ± SD
(95% confidence interval)

TOST_P(−0.5%, 0.5%
equival interval)

GTV D95 (Gy) 27.466 ± 1.432 27.576 ± 1.424 5.120E-12

(24.659–30.272) (24.785–30.367)

Dmean (Gy) 29.906 ± 1.149 29.987 ± 1.144 5.630E-13

(27.654–32.158) (27.744–32.230)

D2 (Gy) 32.282 ± 2.716 32.351 ± 2.663 4.341E-11

(26.959–37.605) (27.132–37.570)

Len L Dmean (Gy) 1.603 ± 0.403 1.608 ± 0.405 8.140E-14

(0.812–2.393) (0.814–2.402)

D2 (Gy) 1.992 ± 0.428 1.993 ± 0.437 2.653E-10

(1.153–2.830) (1.137–2.849)

Len R Dmean (Gy) 1.740 ± 0.355 1.737 ± 0.355 6.930E-13

(1.043–2.436) (1.042–2.432)

D2 (Gy) 2.080 ± 0.616 2.077 ± 0.602 8.846E-11

(0.872–3.287) (0.897–3.257)

Optic nerve L Dmean (Gy) 2.492 ± 0.456 2.495 ± 0.456 2.950E-15

(1.599–3.386) (1.600–3.389)

D2 (Gy) 3.067 ± 1.500 3.059 ± 1.500 4.417E-12

(0.127–6.007) (0.119–5.999)

Optic nerve R Dmean (Gy) 2.681 ± 0.369 2.674 ± 0.365 1.230E-11

(1.957–3.405) (1.958–3.390)

D2 (Gy) 3.293 ± 1.267 3.279 ± 1.259 4.238E-07

(0.810–5.776) (0.811–5.747)

Skull Dmean (Gy) 2.557 ± 0.186 2.561 ± 0.186 2.490E-16

(2.191–2.922) (2.196–2.927)

D2 (Gy) 6.493 ± 0.497 6.504 ± 0.491 5.283E-11

(5.519–7.467) (5.541–7.467)

Skin Dmean (Gy) 2.387 ± 0.171 2.389 ± 0.171 3.550E-16

(2.052–2.723) (2.053–2.724)

D2 (Gy) 7.400 ± 0.536 7.416 ± 0.522 6.134E-10

(6.349–8.451) (6.393–8.839)

Brain Dmean (Gy) 3.336 ± 0.347 3.336 ± 0.346 4.680E-16

(2.655–4.016) (2.658–4.014)

D2 (Gy) 6.220 ± 0.875 6.218 ± 0.885 1.431E-11

(4.505–7.935) (4.483–7.952)

imaging for BNCT dose calculation has been confirmed.
However, secondary fine-tuning may still be necessary
for T1w with drugs. Since MRI has no dose risk, two
MRIs are also an option for patients with BNCT.The reg-
istration between two MRI images of the same machine
can also be much simpler and more precise than the
registration between MRI and CT.

For 10 patients with brain tumors evaluated using
SARU, there is no significant dosimetric difference
between the doses obtained from sCT and those

calculated based on real CT. D95 of GTV showed a
high level of performance, and all sCT plans met clin-
ical planned dose limits. The calculation deviation of the
sCT dose is less than 1% compared with the real CT
dose, and the gamma index of 2%/2 mm is greater than
98%. We believe this is related to the attentional mech-
anism module’s automatic seeking capacity. It can learn
the regions of interest of various feature maps automat-
ically. At the same time, we apply random deformation
and rotation to the training data to increase the number
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TABLE 4 Dose error of boron neutron capture therapy (BNCT) from different networks

Dose error

SARU UNet Pix2Pix ResNet
Mean ± SD Mean ± SD Mean ± SD Mean ± SD
(95% confidence interval) (95% confidence interval) (95% confidence interval) (95% confidence interval)

GTV Dmean (%) 0.350 ± 0.098 1.018 ± 0.192 1.067 ± 0.255 0.683 ± 0.135

(0.158–0.542) (0.642–1.393) (0.567–1.566) (0.419–0.947)

D2 (%) 0.321 ± 0.133 0.995 ± 0.294 0.970 ± 0.346 0.733 ± 0.219

(0.067–0.671) (0.430–1.520) (0.305–2.116) (0.313–1.076)

Skin Dmean (%) 0.510 ± 0.157 0.883 ± 0.218 0.909 ± 0.275 0.713 ± 0.100

(0.202–0.819) (0.465–1.310) (0.370–1.449) (0.517–0.909)

D2 (%) 0.416 ± 0.118 0.955 ± 0.438 1.451 ± 0.465 0.656 ± 0.327

(0.190–1.643) (0.114–1.796) (0.559–2.343) (0.028–1.285)

F IGURE 6 Dose-volume histogram (DVH) result of test patients 1–10 (a–j)

of training examples. This method improves the model’s
resistance to soft tissue and organ deformation while
also reducing overfitting.

However, the output results will be worthless if the
input data are too different from the data in the train-
ing set, hence the datasets should cover as many
categories as feasible. Simultaneously, we must guar-
antee that the MRI and CT images in the training set

are appropriately registered, as registration quality
can have a major impact on the findings. Other lim-
itations of this approach have not been identified in
a large number of clinical cases. Furthermore, the
T1-weighted image is taken as input and outputs the
corresponding CT image, using a single-in-single-out
mode. If images from other modalities are available,
such as T2-weighted and ultra-short-term echo (UTE),
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F IGURE 7 Dose-volume histogram (DVH) result of two patients from different networks

we can employ a multiple-input-single-output mode to
improve the results. Additionally, 3D networks will be an
interesting topic if more datasets are available, as the
introduction of interlayer information can also improve
edge artifacts in images to some extent.

5 CONCLUSIONS

Dose calculation is a key step in BNCT treatment plan-
ning. In radiotherapy, CT images are critical for dose
computation. However, cross-modality image registra-
tion is often not good enough, and additional CT scans
complicate treatment procedures and increase dose
risk. MRI has the advantages of no ionizing radiation,
clear imaging of soft tissue, and real-time imaging, and
has been proposed to be potentially used for boron
concentration estimation before BNCT treatment. In this
work,a new neural network structure named SARU with
an attentional mechanism is proposed to directly map
MRI to CT images, which can greatly simplify the pre-
treatment workflow and reduce the dose received by
patients. The head MAE of SARU is 67.81 ± 24.31 HU,
which is better than UNet (80.73 ± 24.68 HU), ResNet
(77.31 ± 26.73 HU), and Pix2Pix (85.29 ± 23.23 HU)
for the same time, and the sCT image has been reg-
istered with the MRI, so the problem of image feature
mismatch has also been eliminated. Meanwhile, Monte
Carlo dose calculation results show that the gamma
index of 2%/2 mm is greater than 98%, which meets the
dose calculation requirements. This method can greatly
simplify the treatment planning process of BNCT and
reduce the dose risk of BNCT therapy.
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