变曲率螺旋管内两相流型变迁模拟研究

张艳婷^{1,2} 庄乃亮^{1,2} 李阳阳^{1,2} 赵浠君^{1,2} 赵行斌^{2,3} 汤晓斌^{1,2}

(1.南京航空航天大学核科学与技术系,南京 211106;2.空间核技术应用与辐射防护工业和信息化部重点实验室,南京 211106;3.南京航空航天大学航天学院,南京 211106)

摘 要 为进一步提升蒸汽发生器螺旋换热管的传热传质性能,本文提出了一种盘管曲率周期性变化的变曲率螺旋管改进方案。 并对变曲率螺旋管内气液两相流动特性开展了数值模拟研究。基于有限元方法,建立了单根变曲率螺旋管内流体六面体结构化 网格,采用 VOF 模型捕捉相界面,分析管内液相流场分布特性。研究发现,在同一根变曲率螺旋管内不同位置管段的两相分布 与流型并不相同,部分管段出现了分层流-波状流-塞状流的间歇性流型变迁现象。这是由于盘管曲率的周期性改变,使得管内液 相所受离心力不断改变,两相分布在空间位置及时间分布上均不断变化,产生了两相流型变迁的现象。

关键词 气液两相流;变曲率螺旋管;流型变迁;蒸汽发生器;离心力 中图分类号: TL332 文献标识码: A 文章编号: 0253-231X(2024)07-2026-07

Simulation of Two-phase Flow Pattern Transition in Helical Tubes With Variable Curvature

ZHANG Yanting¹ ZHUANG Nailiang^{1,2} LI Yangyang^{1,2} ZHAO Xijun^{1,2} ZHAO Hangbin^{2,3} TANG Xiaobin^{1,2}

 Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China;
Key Laboratory of Nuclear Technology Application and Radiation Protection in Astronautics, Ministry of Industry and Information Technology, Nanjing 211106, China;

3. School of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China)

Abstract To further advance the performance of heat and mass transfer in the helical heat exchange tubes of the steam generator, this paper presents an enhancement plan involving a helical tube design featuring periodic curvature changes. A numeric simulation study was conducted to examine the characteristics of a gas-liquid two-phase flow within tubes of varying curvature. By applying the finite element method, a hexahedral structured grid was established for the fluid flow within a single helical tube. The Volume of Fluid (VOF) model was utilized to capture the phase boundary, and the characteristics of the in-tube liquid phase flow field distribution were analyzed. The research found differing two-phase distributions and flow patterns in different sections within the same helically-curved tube, with some sections displaying an intermittent transition phenomenon from stratified flow to wavy flow, and then to plug flow. This phenomenon is attributed to the periodic variations in coil curvature, which in turn continuously alters the centrifugal force experienced by the in-tube liquid phase, leading to a dynamically changing two-phase distribution in both spatial and temporal contexts.

Key words two-phase flow; variable curvature helical tube; flow pattern transition; steam generator; centrifugal force

0 引 言

蒸汽发生器是核反应堆的压力边界以及核电站 一、二回路的热交换枢纽,是核岛三大重要设备之 一。螺旋管式蒸汽发生器具有换热性能高、结构紧 凑、热膨胀自补偿性好等优点^[1,2],被应用于第四 代堆与小堆技术中。先进高效的螺旋管式蒸汽发生 器是核能中长期计划的重点研发对象之一^[3]。

通信作者: 庄乃亮, 副教授, 博士, 主要从事核反应堆热工水力与空间核动力研究, zhuangnailiang@nuaa.edu.cn。

收稿日期: 2024-01-19;修订日期: 2024-06-23

基金项目:国家自然科学基金 (No.12105142);江苏省博士后科研资助 (No.2021K387C);国创计划 (No.202210287046Z, No.202310287152Y) 作者简介:张艳婷 (1997–),女,硕士生,主要从事蒸汽发生器传热传质研究。

在提高螺旋管式蒸汽发生器的思路与研究方 面, Li 等^[4] 研究了半圆形螺旋管内侧和外侧的 速度场及温度场的协同作用,发现由于二次流影响 较小,螺旋管的内侧壁面传热性能低于外侧壁面。 Zhang 等^[5]研究了矩形截面螺旋管内流动与传热 特性,发现增加矩形截面的纵横比会导致截面二次 流场减弱,认为可以通过增强螺旋管内侧壁面区域 的二次流场结构来提高传热传质性能。对于螺旋管 束布置思路方面, Lee 等^[6]利用大涡模拟研究了 五层定曲率螺旋管束壳侧流场分布,发现由于管束 间存在遮挡,出现明显的流动死区。Shen 等^[7]研 究了不同螺旋角排列下螺旋管束壳侧流场结构,发 现适度增大螺旋角可以使截面速度分布增大,流体 搅混能力增强。可以看到, 传统的定曲率螺旋管式 蒸汽发生器因管内流场结构不再随着流程变化导致 管内流体传热传质性能不佳以及在壳侧由于管束间 紧密排列管与管之间出现遮挡,出现低流速区甚至 流动死区,导致壳侧流体横掠冲刷管束不充分、水 垢杂质沉积等问题,无法满足越来越高的换热需求。 对此,本文提出了一种盘管曲率沿管道周期性变化 的变曲率螺旋管改进思路,并采用纵向交叉布置的 变曲率螺旋管束结构方案^[8],以实现强化管内流体 横向混合以及强化壳侧流体冲刷叉排布置管束的目 的,具体方案见第1节。

蒸汽发生器传热管内因不断被加热从而会发生 相变,出现流动沸腾现象,沸腾过程分为对流换热、 过冷沸腾、核态沸腾、液膜对流沸腾和蒸干传热等 五个典型流动传热阶段。对螺旋管内两相流型的 研究方面,许多学者采用空气和水开展研究。Zhu 等^[9] 实验研究了螺旋管内空气与水的两相流型,并 提出了流型转换准则。Zhuang 等^[10] 实验研究了螺 旋管内空气与水的两相流型,共发现六种典型流型 (泡状流、塞状流、弹状流、环状流、半环状流、分 层波状流)。Che 等^[11] 通过模拟与实验对比分析, 认为 VOF 方法可以较好的捕捉相界面。Mansour 等^[12] 通过 VOF 方法分析了螺旋管内空气和水的 两相流型、速度分布和二次流场结构。

本文将采用 VOF 方法模拟变曲率螺旋管内空 气-水的两相流动特性,开展变曲率螺旋管内气液 两相流型分析。

1 变曲率螺旋管结构与管束结构

如图 1 所示,与典型螺旋盘管不同的是,该螺 旋盘管距离轴心的水平垂直距离是呈现周期性变化 的,即螺旋管的曲率半径随管道沿程周期性变化。 将变曲率螺旋盘管纵向交叉布置可得到变曲率螺旋 盘管束结构,如图 2 所示。本文选用的变曲率螺旋 盘管长轴 D 为 440 mm,短轴 d 为 280 mm,圆管 内径 r 为 16 mm,节距 P 为 60 mm,倾斜角 β 为 6.65°。

图 2 纵向交叉布置的变曲率螺旋管束 Fig. 2 Variable curvature helical tube bundle arranged longitudinally

图 3 是变曲率螺旋盘管中心线距离盘管中心轴 的水平距离随管程变化曲线。径向坐标是距离的长 度,轴向坐标是变曲率螺旋管沿程轴向角度,入口 处轴向角定义为 0°,出口处轴向角则为 1080°。可 以看出,随着轴向角的增大呈周期性变化,螺旋管 的曲率半径也是周期性变化规律。

图 3 变曲率螺旋盘管 d_r 随轴向角的变化曲线 Fig. 3 Variation curve of helical tube d_r with axial Angle

2 数值模拟方法

2.1 网格结构

采用六面体结构化网格,边界层数为5层,增长 率为1.2,总节点数为5490425,总单元数为1321600。 网格平均正交质量为0.98。

为对比分析不同位置(管段)的气液两相分 布,选取了同一根变曲率螺旋管的三个管段(管段 A、管段 B 和管段 C)作为代表。每个管段总长 350 mm,并在每个管段内各自截取一个横截面,对 应为截面 a、截面 b 和截面 c,管段与截面选取位 置示意图如图 4 所示。

图 4 网格划分及选取管段位置说明 Fig. 4 Meshing and selection of tube areas position description

2.2 数值模型与边界条件

流体在管内自下向上流动,两相流模型选用 VOF 模型精确捕捉相界面^[13]。湍流模型选用 Realizable *k-ε* 模型^[14,15]。空气设为主相,且与水之间的 表面张力为 0.072 N·m⁻¹,液相和气相均为不可压缩 流体。壁面函数采用 Scalable Wall Function(SWF), 求解方法采用 PISO 算法, 压力方程采用 PRESTO 算法, 动量方程、湍流方程均采用二阶迎风格式。时 间步长设置为 0.0001 s, 入口边界为速度入口, 出 口边界为压力出口。空气入口速度为 12 m·s⁻¹, 水 入口速度为 0.1 m·s⁻¹。

3 计算结果与讨论

3.1 变曲率螺旋管内两相总体分布

图 5 所示为变曲率螺旋管内 2 个时刻的空气与 水总体分布。浅色区域是空气,深色区域是水。可 以看出在不同管段内两相流型并不同,接下来将对 管段 A、B、C 内的两相分布依次分析。

图 5 管内两相总体分布 Fig. 5 Phase interface distribution at different times

3.2 管段 A 的两相流型分析

图 6 是 t=22.24 s 至 t=22.72 s 管段 A 的相分 布云图。在 t=22.24 s 时,管段 A 内液态水平稳缓 慢的流动,管内流型为分层流,t=22.50 s 时,由于 液态水已经流经了多处曲率变化比较大的管段,且 期间内高速气体对液态水的夹带作用,液态水在截 面 a 附近时,速度很小,导致液相由连续相转变为 非连续相。当 t=22.63 s 时,由小波浪发展为的速 度很快、幅度很大的大波浪开始流经管段 A,管内 流型为塞状流,随着时间的推移,在 t=22.70 s 时 抵达截面 a,随后流经截面 a,与管底部的水交汇。

图 7 是截面 a 在不同时刻的相分布云图 (浅色 区域代表空气,深色区域代表水)。可以看出,液相 一开始分布在管道底部,t=22.7 s 时,波浪前端流 经截面 a,由于波浪速度很快,所以在流动过程中 受到的离心力也会变大,因此可以看到在 t=22.7 s、 t=22.9 s 和 t=25.9 s 时,液相分布在管外侧。

图 8(a) 是截面 a 的空泡份额随时间演变曲线。 可以看出,空泡份额整体数值在 0.6 至 1.0 之间波 动,波动幅度很大,由 1.0 急剧下降至 0.6 附近。 *t*=22.50 s 至 *t*=23.5 s、*t*=25.5 s 至 *t*=26.5 s 这两 个区间内出现了数值为 1.0 的情况。结合图 6 和图 7,得到流体在管段 A 内流动,一开始液态水在管底 部平稳缓慢的流动,流型为分层流,由于高速气体 对液体表面的持续冲刷,相界面出现了明显的波动, 流型由分层流变迁为分层波状流,空泡份额数值在 0.9 至 1.0 区间波动,由于液相持续受到离心力及 气相的夹带作用,由连续相转变为非连续相,流体 继续流动,小波浪发展为速度很快、幅度很大的大 波浪流经管段 A,对管段 A 内的流体进行搅混,空 泡份额由 1.0 急剧下降至 0.6,波浪的经过使空泡 份额数值在 *t*=23.0 s 附近波动,流型由分层波状流 变迁为塞状流,持续约 0.5 s 后,流型再次变迁为 分层波状流。*t*=25.5 s 至 *t*=26.5 s 区间内也出现了 分层波状流–塞状流的流型变迁现象。

图 6 管段 A 的相分布云图 Fig. 6 Phase distribution cloud image of tube area A

图 8(b) 是空泡份额概率密度直方图。可以看 出空泡份额集中在 0.6 至 1.0 之间,且在 0.95 附近 有一个明显的波峰,气相面积基本占据管道面积的 0.8 倍以上。

图 8 空泡份额随时间演变曲线 (a)、概率密度直方图 (b) Fig. 8 Time-series analysis of void fraction (a), probability density histogram (b)

3.3 管段 B 的两相流型分析

如图 9 所示是 B 段内相分布云图。和管段 A 内相分布云图相似, t=25.6 s 时刻水在管底部平稳

Fig. 9 Phase distribution cloud image of tube area B

缓慢地流动,流型为分层波状流。流体继续在管内 流动,由于速度小且高速气体的夹带作用,在 t= 25.8 s 时液相不再是连续相,经过 0.2 s 后,流经管 段 A 的波浪开始抵达管段 B,并且逐渐发展为速度 很快、幅度很大的大波浪,波浪在管段 B 内持续了 0.22 s,流型由分层波状流变迁为塞状流。由于离心 力的作用,很明显的看出水在流动过程中向管外侧 偏移。

从截面 b 的相分布云图可以看出, *t*=22.7 s 以及 *t*=22.9 s, 截面内均为气相, *t*= 25.5 s 至 *t*= 25.9 s 内, 气相体积逐渐增大, 但液态水仍比较平稳的在管底部流动, 直至 *t*=26.1 s 时, 第二个波浪抵达截面 b, 增强了流体的搅混。

如图 11(a) 所示,在 t=22.5 s 至 t=23.5 s 内, 空泡份额数值为 1.0,且持续了约为 3 s,随后又急 剧下降到 0.5 左右。液相也不再是连续相。空泡份额 整体数值在 0.5 至 1.0 范围内波动,相比于管段 A, 管段 B 的液态水只有一个时间段为非连续相,这是 由于第一个波浪继续流动抵达管段 B,并与水交汇, 使得该管段内水的体积占比增大,高速气体对液体 的夹带作用减弱使液相不再连续。如图 11(b) 所示, 空泡份额的概率密度分布在 0.5 至 1.0 区间,峰位 于 0.85 附近。

3.4 管段 C 的两相流型分析

管段 C 的相分布云图如图 12 所示,截取时间 分别为 t=25.00 s 和 t=25.03 s。图 13 是截面 c 的相 分布云图,可以看出,管底部的水厚度约占管径的 一半,相界面几乎接近于水平,但是还是能看出有 明显的波动。结合管段内相分布云图可以得出,由 于气相速度远大于液相速度,所以高速空气会冲刷 相界面,产生连续的扰动波浪。此时管内的流型为 典型的分层波状流。

图 14(a) 是截面 c 的空泡份额随时间演变曲线。 空泡份额在 0.3 至 0.6 之间波动,波动幅度有明显

图 11 空泡份额随时间演变曲线 (a)、概率密度直方图 (b) Fig. 11 Time-series analysis of void fraction (a), probability density histogram (b)

图 12 管段 C 的相分布云图 Fig. 12 Phase distribution cloud image of tube area C

的规律性,且有三处比较明显的峰,峰值大约为0.58, 每个峰宽的宽度约为1.5s,说明了流体在流动期间 有波浪生成,小波浪逐渐演化为较大的波浪,随后 较大的波浪在流经截面 c 后又演化为小波浪,即生 成的波浪间歇性的流经管段 C。如图 14(b) 所示, 空泡份额概率密度直方图呈现双峰分布,第一个峰 明显高于第二个峰。

图 14 空泡份额随时间演变曲线 (a)、概率密度直方图 (b) Fig. 14 Time-series analysis of void fraction (a), probability density histogram (b)

3.5 不同管段的空泡份额对比

图 15、16 分别为不同截面的空泡份额随时间 变化曲线与概率密度直方图。可以看出,流体在流 动过程中,不同位置处的空泡份额随时间的变化有

很大的差异,越靠近管出口处,变化越大。空泡份额 数值集中的范围也不一样,发生流型变迁的管段空 泡份额集中范围更宽。说明流体在流动过程中,因 发生了分层流-分层波状流-塞状流的间歇性流型变 迁,导致相界面变化很大,相应的截面空泡份额数 值波动频率和幅度均有显著的差异。

Fig. 16 Void fraction histogram of sections a, b, and c

4 结 论

本文提出了一种盘管曲率周期性变化的变曲率 螺旋管改进方案,并基于 VOF 模型模拟了变曲率 螺旋管内空气-水两相流动现象。主要结论如下:

 在变曲率螺旋管不同位置出现了两相分布 规律并不同的现象。部分管段内是分层流,而有些管 段则出现了分层流-波状流-塞状流的间歇性过渡, 即流型变迁现象。

2) 从两相受力分析角度看,与传统的定曲率螺旋管两相流型不同,在变曲率螺旋管内流体在不同位置所受离心力的大小和方向始终处于变化中,叠加气体对液体的夹带作用,最终产生了同一根管内不同管段位置处的两相分布并不相同的现象。

本文提出的改进方案进一步丰富了螺旋管强化 传热传质的改进思路,加深了对两相流在管内随着 空间位置与时间演化特性的认识。

参考文献

- Fsadni A M, Whitty J P M. A Review on the Two-Phase Heat Transfer Characteristics in Helically Coiled Tube Heat Exchangers [J]. International Journal of Heat and Mass Transfer, 2016, 95: 551–565
- [2] Naphon P, Wongwises S. A Review of Flow and Heat

Transfer Characteristics in Curved Tubes [J]. Renewable and Sustainable Energy Reviews, 2006, 10(5): 463–490

- [3] Abram T, Ion S. Generation-IV Nuclear Power: A Review of the State of the Science [J]. Energy Policy, 2008, 36(12): 4323–4330
- [4] Li Y X, Wu J H, Zhang L, et al. Comparison of Fluid Flow and Heat Transfer Behavior in Outer and Inner Half Coil Jackets and Field Synergy Analysis [J]. Applied Thermal Engineering, 2011, 31(14/15): 3078–3083
- [5] Zhang L, Li J Q, Li Y X, et al. Field Synergy Analysis for Helical Ducts with Rectangular Cross Section [J]. International Journal of Heat and Mass Transfer, 2014, 75: 245–261
- [6] Lee S J, Hassan Y A. Numerical Investigation of Helical Coil Tube Bundle in Turbulent Cross Flow Using Large Eddy Simulation [J]. International Journal of Heat and Fluid Flow, 2020, 82: 108529
- [7] Shen C, Liu L M, Xu Z Y, et al. Influence of Helix Angle on Flow and Heat Transfer Characteristics of Lead-Bismuth Flow in Helical-Coiled Tube Bundles [J]. Annals of nuclear energy, 2023, 180: 109483
- [8] 庄乃亮,汤晓斌,杨晨皓等.一种变曲率盘绕的蒸汽发生器螺 旋盘管组件: CN113465436B [P]. 2022-06-17 ZHUANG nailiang, TANG xiaobin, YANG chenhao, et al. Spiral Coil Assembly of Steam Generator with Variable

Curvature: CN113465436B [P]. 2022-06-17

- Zhu H Y, Li Z X, Yang X T, et al. Flow Regime Identification for Upward Two-Phase Flow in Helically Coiled Tubes
 [J]. Chemical Engineering Journal, 2017, 308: 606–618
- [10] Zhuang N, Zhang K, Manera A, et al. X-Ray Radiography and High-Speed Videography Measurement on Void Fraction in Helical Coil [C]// International Topical Meeting on Advances in Thermal Hydraulics, 2018: 250–262
- [11] Che S, Breitenmoser D, Infimovskiy Y Y, et al. CFD Simulation of Two-Phase Flows in Helical Coils [J]. Frontiers in Energy Research, 2020, 8: 65
- [12] Mansour M, Landage A, Khot P, et al. Numerical Study of Gas-Liquid Two-Phase Flow Regimes for Upward Flow in a Helical Pipe [J]. Industrial And Engineering Chemistry Research, 2019, 59(9): 3873–3886
- [13] Hirt C W, Nichols B D. Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries [J]. Journal of Computational Physics, 1981, 39(1): 201–225
- [14] Sarkar S, Lakshmanan B. Application of a Reynolds Stress Turbulence Model to the Compressible Shear Layer [J]. Aiaa Journal, 1990, 29(5): 743–749
- [15] Speziale C G, Sarkar S, Gatski T B. Modelling the Pressure-Strain Correlation of Turbulence-An Invariant Dynamical Systems Approach [J]. Journal of Fluid Mechanics, 1991, 227: 245–272