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A B S T R A C T   

Coded-aperture radiation imaging technology has important application value in the field of space radiation 
detection. A coded-aperture imaging algorithm based on random code and Backpropagation neural network 
(BPNN) is proposed for high quality imaging of x-rays and gamma rays in space environments. The experimental 
results show that BPNN can improve the signal-to-noise ratio of the reconstructed image when applied to the 
reconstruction process of coded-aperture imaging based on random code. Therefore, it has a good application 
prospect in the field of space coded-aperture imaging.   

1. Introduction 

Observations of cosmic hard X-rays and gamma rays (10–500 keV) 
can provide us with direct information about some high-energy phe-
nomena (～1020 eV) in the universe (Phillips et al., 2008). However, 
gamma-ray bursts are fast and transient, with low photon flux reaching 
the detector and strong environmental background. This requires im-
aging equipment to quickly and accurately locate the direction of 
gamma-ray bursts in a complex radiation environment. Coded-aperture 
imaging technology uses a multi-aperture collimator with a preset 
pattern to modulate the cosmic rays and reconstructs the data detected 
by the array detector to obtain the direction of the source (Cenker-
amaddi et al., 2012; Ding et al., 2016). It has the advantages of excellent 
detection efficiency and high reconstruction contrast-to-noise ratio 
(CNR). 

The coding sequences of coded-aperture imaging generally have 
random array, uniformly redundant array (URA) (Shen et al., 2020; 
Macwilliams and Sloane, 1977) and modified uniformly redundant 
array (MURA) (Cieślak et al., 2016) and other arrays. Compared with 
coding arrays, such as URA and MURA, the random array is not limited 
by mathematical rules, and has good design flexibility. It can set the size 
and select the opening rate as required (Fenimore and Cannon, 1978; 

Gottesman and Fenimore, 1989). Thus, the random array can be flexibly 
designed according to the task objective during the application process 
makes the coding function flexibly designed according to the task ob-
jectives during the application process. However, When X-rays or 
gamma rays from multiple directions pass through the random coded 
collimator, the background noise generated by rays in each direction is 
superimposed, which results in a high background and poor contrast in 
the image. Therefore, it is a crucial research topic to improve the im-
aging quality of coded-aperture imaging based on random code. 

Coded-aperture imaging method based on random array was origi-
nally decoded using correlation methods and iterative decoding algo-
rithm (Gottesman and Fenimore, 1989; Martineau et al., 2010). The 
correlation analysis method has the advantage of remarkable time- 
saving. However, it can only be used to rehabilitate the coding fea-
tures of the image, and the noise from many aspects cannot be effec-
tively suppressed (Cieślak et al., 2016). The MLEM method uses a large 
number of iterative calculations to obtain high-quality reconstructed 
images (Ballesteros et al., 2001; Berrim et al., 1996). However, the 
reconstruction speed of this algorithm will decrease significantly when 
the detector array is large. 

The latest coded-aperture imaging decoding method proposed by our 
research group is artificial neural network, which is widely used in the 
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field of nuclear technology, such as energy spectrum analysis and 
nuclide recognition (Olmos et al., 1992; He et al., 2018). The MURA 
collimator was successfully decoded by the Convolutional Neural 
Network (CNN) method (Zhang et al., 2019) and a clear reconstructed 
image was obtained. This method can reconstruct the image of the 
radioactive source quickly and accurately, which can be used for real- 
time measurement and dynamic monitoring of cosmic hard X-rays and 
gamma rays. 

In this study, the BPNN method is used to decode the random 
encoding, which overcomes the inherent high background of the 
random encoding to improve the CNR and improve the speed of image 
reconstruction. In the Particle and Heavy Ion Transmission Code System 
(PHITS) (Sihver et al., 2007), an imaging device based on cadmium zinc 
telluride (CZT) pixel detector and random coding was built to simulate 
the imaging process of X-rays and gamma rays to complete the BPNN 
training. The experimental device is set up, verifying the performance of 
the method, and the BPNN reconstruction is compared with related 
analysis methods. 

2. Principle 

The birth of random array is the most direct method to solve the low 
detection efficiency of pinhole imaging, the idea is that the probability 
and position of openings in the generated encoding function are random. 
The correlation analysis method obtains the theoretically optimal 
reconstructed image by selecting the coding array whose correlation is 
similar to the delta function (Fenimore and Cannon, 1978), which has 
the advantage of remarkable time-saving. In the actual imaging process, 
the background noise comes from the transmission and scattering of 
photons with different energy, device processing and assembly errors, 
near-field effect and amplification effect to a certain extent, and detector 
electronic noise. For example, the noise of CdZnTe pixel array detection 
system mainly comes from the incomplete charge collection noise, the 
equivalent electronic noise of readout circuit, and the leakage current 
noise of crystal surface electrode. The radioactive source image is 
reconstructed by the decoding method of correlation operation. When 
performing the periodic autocorrelation operation, the coding matrix 
and the decoding matrix have the highest peak value when they 
completely coincide. Because the coding method is random, when per-
forming the correlation operation on the decoding matrix shift, the 
opening units of the coding matrix and the decoding matrix may over-
lap, resulting in uneven background sidelobe in the reconstructed 
image, also known as inherent noise. Fig. 1 lists the autocorrelation 
function of a 16 × 16 random coding array and the cyclic autocorrela-
tion function of a one-dimensional random sequence with a length of 
256. It can be seen that in addition to the peak, the background noise is 
superimposed with the inherent noise, and this noise cannot be 

artificially removed during reconstruction. In this paper, a new recon-
struction method based on BPNN was proposed to obtain reconstructed 
images under random array conditions. 

BPNN has arbitrarily complex pattern classification ability and 
excellent multi-dimensional function mapping ability, which makes 
them perform well in image reconstruction and object recognition (He 
et al., 2018). A BPNN consists of input layer, hidden layer, and output 
layer. In each training of BPNN, the loss function is calculated by 
comparing the output value obtained by the neural network with the 
target output value, and the error is fed back layer by layer through the 
BP algorithm, until the error between the output value of the neural 
network and the current output value is within an acceptable range. 
Therefore, the hidden layer may be used to reduce the effects of noise in 
the coded image to obtain reconstructed images with decreased noise. 

3. Methods 

The reconstruction process(Fig. 2) based on BPNN is mainly divided 
into four steps: 

1. Design a mask of random array to model the geometric relation-
ship between the radioactive source, the mask and the detector in the 
Particle and Heavy Ion Transport Code System (PHITS). 

2. The radioactive source imaging process is simulated using the 
Monte Carlo method and then coded images are divided into train set 
and test set. 

3. Construct the BPNN network, train the network with the training 
set, and test the network with the simulated test set. 

4. The coded images obtained by the experimental device are used 
for the experimental test set, and CNR is used to evaluate the quality of 
reconstructed image and the reconstruction capability of the BPNN- 
based method. 

3.1. Monte Carlo model construction 

The training data were obtained by Monte Carlo simulation, and the 
image model was constructed using the PHITS program. The CZT de-
tector is widely used for X-ray and gamma-ray imaging due to its high 
energy and spatial resolution. The size of the CZT detector (McCleskey 
et al., 2015; Grindlay et al., 2011) used was 25.5 × 25.5 × 5 mm3, 
divided into 16 × 16 pixels, with a single pixel size of 1.5 mm × 1.5 mm 
× 5 mm. The coded-aperture imaging telescope usually need to 
continuously monitor a large area for a long time to deal with unknown 
direction information due to the random occurrence of high-energy ra-
diation events in the entire sky in space. At the same time, it needs 
imaging in orbit in a short time; thus, the detection satellite can accu-
rately observe the X-rays and gamma rays in the follow-up (Fitzgerald 
et al., 2013; Krimm et al., 2013). Under this premise, random coding and 

Fig. 1. the autocorrelation function of a 16 × 16 random coding array and the cyclic autocorrelation function of a one-dimensional random sequence.  
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Fig. 2. Block diagram of the BPNN method for coded image reconstruction.  

Fig. 3. Upper left: schematic of the coded mask and pixel detector. Upper right: Monte Carlo model in PHITS. Bottom: Specific parameters of the model in phits.  
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related operation reconstruction algorithms have become one of the 
commonly used technical approaches for spatial coding aperture imag-
ing. The coding array of the mask was a random code of order 32 × 32 
made of tungsten with a length of 51.2 mm. The size of the single hole 
was 1.6 mm × 1.6 mm, and the thickness of the mask was 2 mm, which 
can shield photons. The final Monte Carlo model is shown in Fig. 3, and 
the parallel distance of the mask and CZT detector was 77 mm. The 
parameters of the designed Randomly-coded-aperture gamma camera 
are shown in Table 1. In theory, it can achieve an FCFOV (Full Coded 
Field of View) of 20.24◦×20.24◦ and a spatial resolution of 1.19◦. 

The PCFOV (Part Coded Field of View) was about 3.8 times that of 
the FCFOV. The area between the green box and the red box was the area 
where 1–50 % of the partially coded data was included in the recon-
struction. This would make the FOV 2.8 times larger than the FCFOV. As 
can be seen in Fig. 4, within the 50 % of the PCFOV, the hot spot can be 
located more clearly. As the PCFOV was enlarged, the imaging effect 
degraded significantly. When the PCFOV was between 25 % and 50 %, 
which was the region between the blue box and the green box, the 
radioactive source image could not be reconstructed. Therefore, the 
follow-up research mainly focuses on the hot spot reconstruction of 
FCFOV. 

3.2. Data acquisition and BPNN train 

The training data were obtained by Monte Carlo simulation. In the 
simulation, a radioactive source was placed 1 m away from the mask, 
and the photons were approximately incident from one point to the 
mask. The region in the FOV of the gamma camera on the plane where 
the radioactive source was located was discretized into a 17 × 17 image, 
and a two-dimensional array reflecting the actual position of the 
radioactive source was obtained, where 1 indicated that the pixel had a 
radioactive source, and 0 indicated no radioactive source. The source 
image and coded image in each simulated imaging situation were 
considered a set of data samples; the source image was used as input 
data, and the coded image was considered output data. PHITS was used 
to simulate the imaging results when a single radiation source was 
located at 289 different locations, and then a large amount of training 
data was obtained in a short period of time through the superposition of 
single point source detection data. The simulation data accumulated 
over 60 s to reduce the influence of irrelevant noise data in the training 
data on the error convergence. The total number of training samples was 
one million; 90 % of the data was used for training, and the remaining 
data was used for testing. The optimized parameters of BPNN are shown 
as follows. The input data length of the BPNN network model (Fig. 5) 
constructed in this article was the detector data length, which is 256, 
and the output data length was the number of reconstructed image 
pixels, which is 289. The number of hidden layers is 1, and the number 
of hidden layer neurons is 300. The activation function was sigmoid. The 
dropout regularization strategy was used to reduce the over-fitting of the 
model. The loss function was the root mean square error. 

3.3. Experimental device 

The parameters of the experimental platform correspond to the 
Monte Carlo model settings, as shown in Fig. 6. Small squares of 1.6 ×
1.6 × 2 mm3 tungsten with 99 % purity were used to construct the code 
collimator by splicing. Three code collimators have been made with 
open rates of 50 %, 70 % and 90 %. The CZT pixel detector used in this 
study was the MPS256-B produced by the Imdetek Company, which was 
made of pixelated CZT crystal and preamplifier special integrated 

circuit. The configuration circuit of FPGA and ADC was built externally, 
which could simultaneously process 256 channels of data and output the 
corresponding two-dimensional data array containing “channel” and 
“count” information. These data were used to calculate the total count 
and the counting rate of detectors. All pixels of the detector were energy 
calibrated before use. Table 2 shows the detector parameters, which 
were consistent with the parameters in the Monte Carlo model. The 
Randomly-coded-aperture Imaging device composed of CZT detector 
and coded collimator was fixed on the optical platform, and the coded 
collimator was fine-tuned with an accuracy of 0.1 mm through the X, Y, 
and Z axis displacement platform. Thus, the coded collimator and the 
detector were formed in space correspondence. 

4. Results and discussion 

4.1. Reconstruction results under different time and energy measurements 

This experiment simulated the imaging situation caused by gamma 
rays of different energy incident on the end of the imaging device by 
placing different radioactive sources on a plane. Theoretically, in order 
to simulate more realistically, the gamma rays should be maintained as 
parallel as possible when they reach the detector. This approach can 
reduce the collimation effect in the coded-aperture radiography theory 
and better compare the reconstruction effects among different recon-
struction methods. The distance from the source to the detector should 
be sufficiently far. However, excessively far source-detector distance 
reduced the flux on the surface of the detector. Thus, more time was 
consumed to reduce the influence of noise data on the CNR of the 
reconstructed image. In this experiment, the distance between the 
source plane and the detector plane was 1.1 m, and the imaging time was 
reduced on the basis of ensuring sufficient photon flux on the detector 
surface. The sources were Co-57 (7.98 × 105 Bq), Ba-133 (4.14 × 105 

Bq), and Eu-152 (3.44 × 105 Bq). Fig. 7 shows the imaging results using 
three radioactive sources, each of which is placed in the center of the 
FOV. The imaging qualities of the BPNN and related operations were 
compared. The reconstructed data included background noise, and the 
counts produced in the detector were approximately 720–730 per 
minute. 

Fig. 7 intuitively shows the excellent reconstruction performance of 
BPNN under different radioactive sources. On the contrary, the use of 
correlation reconstruction calculation could not obtain valuable images 
despite the longer detection time. In Fig. 7, due to the inherent back-
ground noise generated by the reconstruction based on random coding 
and correlation operation, the reconstruction based on correlation op-
erations produced a fixed highlight area at the bottom right of the image. 

In order to compare the imaging results of BPNN and correlation 
operation, the time-varying trend of the CNR of reconstructed images 
under different energy radioactive sources was drawn, as shown in 
Fig. 8. Here, the radioactive source was replaced by an X-ray tube and 
placed in the center of the FOV. The X-ray tube used in the experiment 
was KYW900A X-ray tube produced by Shanghai Keyway Electronics. 
The target material was tungsten metal, the maximum anode voltage 
was 60 kV, and the anode current range was 0–1 mA. The X-ray energy 
spectrum at 60 kV tube voltage was tested by the radiation detection 
system. According to its energy peak, the count in the 45–55 keV energy 
region was selected as the codeing data. 

Fig. 8 shows that when the imaging time increases, the BPNN can 
generally yield a higher CNR with a short time in the reconstructed 
image, and as time increases, the CNR remains constant. The main dif-
ference between X-ray and gamma-ray reconstructions at different en-
ergies was that they had different “speeds” to achieve a stable optimal 
CNR. Fig. 8 also shows that under different incident rays along with 
measure the increment of time, their respective stable optimal CNR 
values are extremely close. This conclusion indicated that under 
different X-ray and gamma-ray energy, the reconstructed image can 
reach an optimal value in a short time, regardless of the X-ray and 

Table 1 
Theoretical parameters of cameras under 32 × 32 random array.  

Pattern FCFOV Angular resolution 

32 × 32 random array 20.24◦×20.24◦ 1.19◦
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gamma-ray energy. The results show that the reconstruction method 
based on BPNN is different from the traditional correlation operation 
reconstruction. After detecting a certain number of effective photons, 
the image can obtain a stable and optimal CNR. 

4.2. Effect of noise on the reconstructed image 

In the experiment, no background shielding device was applied. The 
source was placed in the center of the camera’s FOV, and the source term 

Fig. 4. Imaging effect of Co-57 source at the edge of FOV at different Partially Coded rates.  

Fig. 5. Architectures of BPNN.  

Fig. 6. Randomly-coded-aperture Imaging device experimental platform.  
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included all the rays generated by the X-ray tube. The source was 6 m 
away from the detector, and the detector count was approximately 
900–1000 per minute. After calibrating the energy spectrum of CZT 

detector, the count with energy range of 45–55 keV was selected by 
adjusting the threshold value for image reconstruction to reduce the 
influence of noise term. Fig. 9 shows that the image quality has been 
improved to a certain extent after the noise is deducted. The data were 
selected when the imaging time was 32 min, the calculation shows that 
the CNR of the reconstructed image before denoising based on the BPNN 
reconstruction method is approximately 15 % lower than the CNR after 
deducting the noise, and the reconstruction based on correlation cal-
culations is reduced by 65 %. The influence of noise on the correlation 
calculation is much greater than that of BPNN, thereby foreseeing the 
application of BPNN reconstruction method in a high background 
environment. 

The reconstructed image after energy selection was selected when 

Table 2 
Specifications of the detector.  

Features Specifications 

Material CZT 
Detector array 16 × 16 
Voxel size 1.5 × 1.5 × 5 mm3 

Pixel pitch 1.6 mm 
Detector size 25.4 × 25.4 × 5 mm3 

Energy range 20–700 keV  

Fig. 7. Reconstruction renderings of different radioactive sources (Co-57, Ba-133, and Eu-152); the white circle is the accurate position of the source.  

Fig. 8. Reconstructed image CNR changes with time.  
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the imaging time was 32 min, and the image matrix was rearranged into 
a one-dimensional array to analyze the excellent reconstruction per-
formance of BPNN, as shown in Fig. 10. The ideal reconstruction method 
should contain two functions, as follows: the complete restoration of the 
characteristics of the coded signal and the suppression of signal- 
independent noise. The hidden layer in BPNN can increase the map-
ping ability of the network and enable it to solve nonlinear problems and 
multidimensional function approximation problems. Therefore, the use 
of BPNN with hidden layers is expected to simultaneously achieve code 
feature restoration and signal-independent noise suppression, as well as 
low-noise coded image reconstruction. Fig. 10 is the reconstructed in-
tensity profile of the light source. BPNN reconstruction shows extremely 
low average background noise; thus, identifying hot spots in the 
reconstructed image in practical applications is easy. On the contrary, 
the average background noise of the reconstructed PSF obtained by the 
correlation operation is much larger than that of the BPNN. This finding 
proves that the reconstruction method based on the correlation opera-
tion is more susceptible to the fluctuation of the background noise. 

4.3. Influence of aperture ratio on imaging quality 

To further analyze the similarities and differences between BPNN 

decoding and traditional correlation operation decoding, different 
random coding aperture rates were set up to study the effect of aperture 
rate with BPNN decoding. In Table 3, the X-ray generated by the ray tube 
was used, the imaging time was 16 min, and the detector count was 
approximately 15,000 after the energy selection process. The peak pixel 
position of the reconstructed image is not at the theoretical position as 
an error reconstruction. Experiments show that the aperture ratio has a 
great influence on the reconstruction accuracy. This was due to the small 
difference between the reconstructed peak and the background mean 
value, and the background fluctuation was large. The image CNR of the 
reconstruction method based on BPNN also had a downward trend with 
the increase in the aperture rate. However, at an aperture rate of 90 %, 
the reconstructed image CNR and the reconstruction accuracy were 

Fig. 9. The change trend of CNR of X-ray reconstruction image. (*: Select the count within the energy range of 45–55 keV).  

Fig. 10. Normalized 1D point spread function of reconstructed image.  

Table 3 
Accuracy and CNR of the reconstructed image.  

aperture rate 50 % 70 % 90 % 

Rebuild accuracy of BPNN 88 % 80 % 75 % 
Rebuild accuracy of Autocorrelation 43 % 26 % 8 % 
CNR of BPNN 21 17.2 16.2 
CNR of Autocorrelation 9.7 6.9 3.5  
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always maintained at a high level. The production of code plates usually 
included high-density metal materials, such as tungsten. Increasing the 
opening rate has a certain implication in reducing the overall weight of 
the equipment. 

4.4. Uniformity of imaging quality in the FOV 

The ideal coded-aperture imaging theory requires that the thickness 
of the code plate is zero, and it has a 100 % shielding effect on incident 
photons of any energy. 

In the actual situation, the code plate was not an ideal zero thickness. 
When the rays were incident from the edge of the FOV, the quality of the 
reconstruction at the edge of view would be reduced due to the colli-
mation effect. The increase in the thickness of the collimator or the 
change in the FOV can exacerbate this effect. The imaging performance 
of the BPNN method was evaluated with X-ray, and 4.5 m distance from 
the detector with an imaging time of 10 s. The imaging FCFOV of the 
device was 20.24◦ × 20.24◦. The connection between the center of the 
detector and the center of the encoder plate was set as the central axis, 
and the angle between the center and the edge was − 10.12◦ ~ +10.12◦

(Fig. 11). 
Fig. 12 shows the variation of reconstructed image CNR with off-axis 

angle. The images obtained by the BPNN method can accurately 
distinguish the position of the source when the source was located at the 
center and edge of the FCFOV. The correlation calculation shows that 
the CNR of the reconstructed image decreases with the offset of the off- 
axis angle. In all positions, the CNR of the results of the BPNN method 
was higher than that of the correlation analysis method. Therefore, the 
reconstruction method of BPNN shows better uniformity of imaging 
quality in the FOV, as shown in Fig. 13. 

4.5. Analysis of imaging performance of multi-point source 

In the application of space radiation detection, in most cases, only 
the X-ray and gamma ray incident in one direction need to be positioned. 
At the same time, the X-ray and gamma ray incident in two or more 
directions within the detection field of vision are small probability 
events. However, in order to deal with this possible situation, we set Co- 
57 with activity of 7.98 × 105 in the imaging field of the experimental 
equipment for experimental imaging verification at a distance of 1 m. 
The radioactive source was placed at the off-axis angles of 0◦ and 10.12◦

as shown in Fig. 14(a) for 60 s coded data acquisition, and the double- 
point source data was obtained by any two overlaps of the coded data 
collected three times. Fig. 14(b) shows the reconstruction results of the 
two-point radioactive source by BPNN method, the ideal imaging result 
should be that the hot spot is located on the circled pixel. The back-
ground noise of the reconstructed image by BPNN method was small, 
and the position of the two-point source was recognized. There is no 
problem of complete reconstruction failure or wrong indication of the 

location of the radiation hot spot. When the radiation source is offset 
from the center, the imaging effect is relatively reduced. The reason for 
this phenomenon is that the obliquely incident photons produce 
repeated counts in several adjacent pixels of the detector, which blurs 
the encoded image, and results in the count of the neighboring pixels of 
the reconstructed image hotspots. The small FOV of gamma camera can 
be set to reduce this phenomenon. In the design of Randomly-coded- 
aperture Imaging device, the trade-off between detector thickness and 
photon diffusion should be considered in the design. 

5. Conclusion 

A BPNN-based reconstruction method for coded-aperture imaging 
was proposed to improve the quality of reconstructed images. A compact 
gamma camera with energy response range of 20 keV – 700 keV based 
on CZT pixel detector and random mask was constructed to study the 
effectiveness of the BPNN method in image reconstruction under various 
conditions. The simulation results showed that the trained BPNN can be 
used in the reconstruction process of coded images and can effectively 
reduce image noise. The CNR of the images obtained by the BPNN 
method was larger than that obtained by correlation analysis method. 
Therefore, this method can be used for real-time measurement and dy-
namic monitoring of space hard X-ray and gamma ray, and has great 
application potential in space detection and other fields. In addition, 
excellent spatial angular resolution is our main objective. We can use 
different sampling precisions or design the size and shape of code 
aperture to improve the spatial angular resolution and uniformity of the 
reconstructed image. 
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