基于 NHMAN 辐射仿真人体模型的蒙特卡罗方法剂量计算研究

汤晓斌, 耿长冉, 谢芹, 陈达 (南京航空航天大学 核科学与工程系, 江苏 南京 210016)

目的:人体模型主要用于放疗过程中的剂量学研究,包括新技术的开发与验证、治疗方案的验证与测量等;使用计算机化的人体模型替代实体模型是当前的研究热点。方法:构建符合中国人解剖生理数据的辐射仿真人体模型——"NHMAN-ADAM"(男性)和"NHMAN-EVA"(女性);使用蒙特卡罗方法程序 MCNP 模拟 0.3 MeV 和 1.0 MeV 单能平行宽束外照射条件下,六种不同照射方向照射时,放射性粒子在人体组织或器官中的输运过程,并计算得到男女人体模型中的有效剂量。结果:分别得到光子能量为 0.3 MeV 和 1.0 MeV 时,AP 照射,PA 照射,LAT 照射方式下的男性与女性全身有效剂量,以及光子外照射时人体皮肤等器官剂量分布,有效剂量计算值与 ICRP 51 推荐值基本吻合,误差约为 4%。结论:NHMAN 辐射仿真人体模型能很好地应用于辐射剂量的计算;并且由计算数据可知,女性的辐射危险性普遍高于男性,在医学成像与放射治疗时应更加注重防护措施。

关键词:人体模型;有效剂量;MCNP

DOI编码:doi:10.3969/j.issn.1005-202X.2012.02.002 中图分类号:R144.1 文献标识码:A 文章编号:1005-202X(2012)02-3216-05

The Study of Monte Carlo Dosimetry Calculaton Based on NHMAN Radiation Human Phantom

TANG Xiao-bin, GENG Chang-ran, XIE Qin, CHEN Da

(Department of Nuclear Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing Jiangsu 210016, China)

Abstract : Objective: Human phantom has been used to dosimetry study in radiotherapy, which includes development and validation of new technology and so on; using computerized model of the human body instead of physical model has also been a hot topic. Methods: We constructed radiation human phantom –"NHMAN-ADAM" and "NHMAN-EVA" based on Chinese physiological feature. The effective dose was calculated in six geometry and two energy using monte carlo method-MCNP. Results: Effective dose and organ doses in male and female have been calculated in three geometry and a couple of photon energy individually. The result of effective dose agreed well with ICRP, difference about be 4%. Conclusions: The result of effective dose agreed well with ICRP, difference about be 4%. Conclusions: The result of effective dose agreed well with ICRP, difference about be to calculate the radiation dose.

Key words: phantoms; effective dose; MCNP

前言

放射治疗中使用的人体模型是用人体各种组织 (包括骨、肺、气腔等)的相应的组织替代材料加工而 成,类似标准人体外形或组织器官外形的模体^[1]。人体 模型主要用于放疗过程中的剂量学研究,包括新技术 的开发与验证、治疗方案的验证与测量等。随着计算 机技术的发展,使用计算机化的人体模型替代实体模 型进行剂量学研究是当前的一个研究热点^[2-5]。 本文的主要工作是构建符合中国人解剖生理数 据⁶⁶的辐射仿真人体模型——"NHMAN-ADAM"(男 性)和 "NHMAN-EVA"(女性);使用蒙特卡罗方法程 序 MCNP 模拟外照射条件下放射性光子束对人体的 有效剂量计算,研究不同能量、不同照射方向条件下, 男女不同性别人体在辐射环境中的辐射剂量表现,从 而验证 NHMAN 辐射仿真人体模型与蒙特卡罗方法 应用于剂量计算的有效性和准确性。

MCNP (Monte Carlo Neutron and Photo Transport Code) 程序是由美国 Los Alamos National Laboratory 开发的一套模拟中子、光子和电子在物质中输运过程 的通用蒙特卡罗计算程序^[7]。本文使用的是 MCNP4C 版本;研究的辐射条件是 0.3 MeV 和 1.0 MeV 的单能 光子平行宽束,分为六种外照射方向——AP 照射(从

收稿日期:2011-11-21

基金项目:江苏省博士后科学基金资助项目(No.1002012C),南京航空 航天大学基本科研业务费专项科研项目(No.Y1065-063) 作者简介:汤晓斌(1978-),男,硕士生导师。E-mail;ac2nt@nuaa.edu.cn。

身体前面正向后照射)、PA 照射(从身体后面正向前 照射)、LAT 照射(从身体右面正向左照射)、OVER-HEAD 照射(从身体上面正向下照射)、UNDERFOOT 照射(从身体下面正向上照射)和 ARBITRARY 照射 (从身体右前上方沿与 X,Y,Z 轴 45°夹角的方向入 射)。

1 辐射仿真体模的建立

1.1 男性体模的建立

本文使用的男性体模为 NHMAN-ADAM 模型, 他是在 MIRD 模型的基础上进行性别改进的仿真人 体模型。此体模代表的是身高为 174.3 cm、体重为 66.6 kg 的成年男性,包含了头部骨骼、脊椎、肋骨、锁 骨、肩胛骨、盆骨、臂骨、腿骨、脑组织、甲状腺、肺、胸 腺、心脏、肾上腺、肾脏、肝、胆囊、胰腺、脾脏、胃、小 肠、上行结肠、横结肠、降结肠、乙状结肠、膀胱、睾丸、 外生殖器、躯干上腔、躯干中腔、躯干下腔、腿部等三 十余种人体组织或器官。 在 NHMAN-ADAM 模型 中,上述器官的外轮廓均使用数学公式进行描述,由 于人体组织器官的外形十分复杂,其外轮廓并不是由 规则的几何曲面所构成。对此,NHMAN-ADAM 对各 个组织器官进行了近似处理,使得其各个组织器官外 轮廓能够使用一个或多个几何曲面所描述。在 MCNP 程序的几何建模过程中,必须将所描述的器官外轮廓 根据布尔代数进行区域描述、使其变为一个空间区 域,然后在相应的区域内对组织器官进行材料成分的 填充。NHMAN-ADAM 模型的几何建模剖面如图 1 所示。

Fig.1 Cross section of adult male

1.2 女性体模的建立

本文使用的女性体模为 NHMAN-EVA 模型,她 在外形轮廓上与 NHMAN-ADAM 模型相似,所包含 的人体组织、器官在外形和数量上也与 NHMAN-AD AM 模型相近,但考虑到女性生殖器以及乳房的高风 险系数,NHMAN-EVA 模型在 MIRD 模型的基础上 增加了乳房与性腺等女性性别器官和组织。此体模代 表的是身高为 174.3 cm、体重为 66.8 kg 的成年女性。 NHMAN-EVA 模型的几何建模剖面如图 2 所示。

图 2 女性体模视图 Fig.2 Cross section of adult female

2 有效剂量的计算

2.1 照射方式的选择

采用的的照射方式是 ICRP 51 介绍的六种标准的 照射方式,分别是平行宽束垂直于身体长轴由体前向 后入射(AP 照射)、平行宽束垂直于身体长轴由体后 向前入射(PA 照射)、平行宽束垂直于身体长轴由身 右侧入射(LAT 照射)、平行宽束垂直于身体长轴由身 之侧入射(LAT 照射)、平行宽束于身体右前上方沿与 坐标系 X、Y、Z 轴分别成 45°夹角的方向入射(ARBI-TRARY 照射)、平行宽束平行于身体长轴由头上向下 入射(OVERHEAD 照射)和平行宽束平行于身体长 轴由脚下向上入射(UNDERFOOT 照射)。采用上述 六种照射方式使用半径为 100 cm、能量分别为 0.3 MeV 和 1.0 MeV 的平面宽束光子源在距离体模中心 100 cm 处进行照射。在上述六种照射方式中,人体是 完全暴露在辐射场中。女性暴露于辐射场中的示意图 如图 3 所示。

2.2 体表单位注量剂量率模拟

本文通过在人体表面均匀模拟 481 个半径为 1 cm 内部充满空气的剂量计,用于探测在不同辐射场 中人体表面剂量率的变化情况。男性人体表面探测小

图 3 女性体模暴露于辐射场中的示意图 Fig.3 Mathematical adult female model showing under radiation

图 4 男性人体表面剂量计分布图

Fig.4 Cross section of phantom showing small air spheres on the

surface of the phantom to simulate dosimeters a-男性体模头胸部正视图;b-男性体模胸部俯视图;c-男 性体模正视图:d-男性体模侧视图

本文采用 MCNP 计数卡中的 F6 功能卡来记录 每一个剂量计的平均沉积能^[7]。F6 栅元能量沉积计数 卡径迹长度有关

$$\mathbf{F6} = \rho_a / \rho_g \int_{L} \int_{E} H(E) \phi(\mathbf{r}, E, t) dE dt$$
(1)

其中 ρ_a 是原子密度(atoms/barn-cm), ρ_g 是质量密度 (g/cm³), H(E)是温度响应函数,

$$H(E) = \sigma_T H_{max}(E)$$
⁽²⁾

 σ_T 是中子或光子的总截面,中子和光子的 $H_{axg}(E)$ 形式不同。

其中 i=1、2 和 3,分别表示非相干散射、对产生和 光电效应, $\overline{E}_{out}(E)$ 是平均光子出射能量。F6 卡中的 计数值 *E* 的单位为 MeV/g per photon。在数据处理是 将单位换为 1 MeV/g=1.6×10⁻¹⁰ Gy,单位注量剂量率转 化公式为:

$$H_{avg}(E) = \sum_{i=1}^{3} p_i(E) (E - \overline{E}_{out})$$
(3)

$$H_T = E \times \pi R^2 \times 1.6021764 \times 10^{-10}$$
 (4)

式中 H_r 为源平面上每 1 个光子在单位时间内器官组 织内的剂量,单位为 $Gy \cdot cm^2$, πR^2 是源面积。体模表面 的单位注量剂量率等高线图如图 5 所示。

设定正向面对放射源的剂量计为"正向剂量计", 背朝源的剂量计为"背向剂量计","背向剂量计"只能 记录穿透体模到达剂量计的辐射。当照射为 AP 照 射,对于体模的背向剂量计所记录的单位注量剂量率 等高线图应能体现出类似 X 射线成像的图。在图 5 中的(a)、(c)图中的右边可以明显的看的到一个人体 的轮廓,这表明 MCNP 可以用于人体体表单位注量 剂量率的模拟,同时也验证 NHMAN 辐射仿真人体 模型应用于剂量计算的有效性和准确性。

a-女性体模在 0.3 MeV 光子 AP 照射下背面与正面的单位注量剂量率等高线图;b-女性体模在 0.3 MeV 光子 UNDERFOOT 照射 下背面与正面的单位注量剂量率等高线图;c--男性体模在 0.3 MeV 光子 AP 照射下背面与正面的单位注量剂量率等高线图;d-男 性体模在 0.3 MeV 光子 UNDERFOOT 照射下背面与正面的单位注量剂量率等高线图 2.3 组织器官单位注量剂量率

使用 MCNP 程序中的 F6 卡计数功能也可以计 算出男性体模与女性体模分别在 0.3 MeV 和 1.0 MeV 的六个不同照射方向的光子辐射场中的各个器 官组织的平均沉积能量,再通过(4)式计算出各个器 官组织的单位注量剂量率。 (5)

2.4 有效剂量的计算

有效剂量 E 被定义为人体各组织或器官的当量 剂量乘以相应的组织权重因子后的和:

$$E = \sum \omega_T \cdot H$$

式中: H 表示组织或器官 T 所受到的当量剂量; ω_r 表 示组织或器官 T 的组织权重因子。根据 ICRP1990 年 建议书制定的我国 GB18871–2002 标准——《电离辐 射防护与辐射源安全基本标准》中分别列出了性腺、 肝、红骨髓、食道、结肠、甲状腺、肺、皮肤、胃、骨表面、 膀胱、乳腺及其他组织或器官的组织权重因子,那些 对辐射不太敏感的器官,如胃、心脏、脾脏等,则被收 录在称为"其他组织或器官"的分类中^{IBI}。本文为了验 证蒙特卡罗方法模拟计算辐射环境中人体有效剂量 数据结果的准确性,为便于将计算结果与 ICRP51 号 报告中的推荐值进行比较,使用的组织权重因子数值 与 ICRP51 号报告一致,均采用 ICRP26 号报告中给 出的组织权重因子数值^[9]。ICRP 26 号报告中给定了 性腺、乳腺、肺、红骨髓、甲状腺、骨表面等主要器官的 组织权重因子。关于"剩余组织"的处理方法是,除去 性腺、乳腺、肺、红骨髓、甲状腺和骨表面之外的其余 接受单位注量剂量率最大的 5 个器官或组织,其中每 个的 $W_T = 0.06$ 。有效剂量是全身度量加权平均值,是 对辐射水平所产生的随机性效应的一种度量。本文考 虑到性别差异对辐射防护带来的重要性,在 ICRP 26 与 ICRP 51 的基础上,使用了一套分性别的权重因 子,如表 2 所示。

表 2 分性别人体的组织权重因子

Tab.2 Tissue weighting fctors of male and female					
组织 T	权重因	日子 W_T	ICRP 平均权重因子		
	Female, W^{f}_{T}	Male, W^m_T	W_T		
性腺	0.25	0.25	0.25		
乳腺	0.3	0	0.15		
红骨髓	0.1	0.12	0.12		
肺	0.1	0.12	0.12		
甲状腺	0.04	0.02	0.03		
骨表面	0.03	0.03	0.03		
其余组织	0.3	0.3	0.3		
全身均匀受照	1.12	0.84	1		

表1人体体模的器官单位注量剂量率(单位:10⁻² Gy·cm²)

Tab.1	Dose rate	unit	fluence	of	various	phantom	organs
-------	-----------	------	---------	----	---------	---------	--------

	光子		照射方式					
性别	能量	组织 T	AP 照射	PA 照射	LAT 照射	OVERHEAD 照射	UNDERFOOT 照射	ARBITRAR 照射
男性	$0.3 \mathrm{MeV}$	骨髓	1.335	1.513	0.888	0.126	0.166	0.886
		骨表面	1.295	1.391	1.066	0.655	0.041	1.062
		性腺	1.898	0.846	0.572	0.015	1.532	1.539
		肺	1.506	1.546	0.818	0.588	0.011	0.919
		甲状腺	1.602	0.731	1.294	0.391	0.008	1.230
		剩余器官	9.307	9.045	6.224	3.448	2.725	7.144
	1.000	骨髓	1.335	4.276	2.935	0.500	0.687	3.102
		骨表面	1.295	3.977	3.403	2.298	0.188	3.358
		性腺	5.202	3.615	2.611	0.051	4.947	4.842
		肺	4.596	4.722	3.057	2.557	0.056	3.300
		甲状腺	4.655	4.616	4.302	1.956	0.035	4.018
		剩余器官	27.611	27.136	21.144	13.848	10.039	23.574
女性	0.300	骨髓	1.335	1.513	0.889	0.127	0.165	0.891
		骨表面	1.288	1.393	1.064	0.659	0.045	1.057
		性腺	1.335	1.29	0.603	0.018	0.073	0.686
		肺	1.415	1.552	0.825	0.599	0.018	0.906
		甲状腺	1.603	0.732	1.295	0.392	0.011	1.232
		乳房	1.856	0.863	1.102	1.533	1.110	1.755
		剩余器官	9.117	9.056	6.224	3.473	1.470	6.769
	1.000	骨髓	3.945	4.276	2.936	0.501	0.688	3.117
		骨表面	3.867	4.048	3.395	2.304	0.197	3.348
		性腺	4.123	4.032	2.388	0.183	0.247	2.729
		肺	4.397	4.687	3.069	2.572	0.068	3.274
		甲状腺	4.657	2.866	4.304	1.957	0.053	4.019
		乳房	5.398	3.588	3.849	5.169	4.049	5.314
		剩余器官	27.191	27.155	21.140	13.894	5.962	22.684

对表 3 所得到的男女有效剂量求算术平均值,与 ICRP 51 号所提供的数据进行比较,比较结果如表 4 所示。

表 3 六种外照射条件下的人体有效剂量计算值 $(10^{-12} Sv \cdot cm^2)$ Tab.3 Effective dose equivalent for 0.3 MeV and 1.0 MeV

photon beams per unit fluence incident in various angles

	性别	男	引性	女	女性	
	光子能量	0.3 MeV	$1.0 \mathrm{MeV}$	$0.3 \mathrm{MeV}$	$1.0 \ \mathrm{MeV}$	
照	AP 照射	1.45	3.80	1.82	5.40	
射 方 式	PA 照射	1.18	3.74	1.50	4.84	
	LAT 照射	0.78	2.83	1.11	3.90	
	OVERHEAD 照射	0.32	1.32	0.78	2.88	
	UNDERFOOT 照身	寸 0.57	1.94	0.46	1.72	
	ARBITRAR 照射	1.09	3.58	1.36	4.52	

쿡	表 4 计算有效剂量值与 ICRP 51 推荐值的比较
Tab.4	Comparison of effective dose equivalent calculated

in this study with ICRP 51 values

照射方式	光子能量	ICRP-51	$H_{\rm E}$	相对误差(%)
	(MeV)	$(10^{-12}Sv \cdot cm^2)$	$(10^{-12}Sv \cdot cm^2)$	(%)
AP 照射	0.3	1.56	1.63	4.5
	1.0	4.60	4.60	0
PA 照射	0.3	1.30	1.34	3.1
	1.0	4.18	4.29	2.6
LAT 照射	0.3	0.89	0.94	5.6
	1.0	3.24	3.36	3.7

3 计算结果

在 MCNP 中,模拟在 6 种照射不同方式,光子能 量为 0.3 MeV 和 1.0 MeV 的辐射场中人体有效剂量 如表 3 所示。由于在 ICRP 51 号文件中只给出体模在 AP 照射,PA 照射,LAT 照射方式下的人体有效剂量, 比较结果如表 4 所示。

4 结论

首先,由表3和表4可知使用NHMAN-ADAM 和NHMAN-EVA模型得到的结果与ICRP51进行比较,两者的数据是相当接近的,最大误差为5.6%。可见使用NHMAN-ADAM模型和NHMAN-EVA模型可以准确的描述人体有效剂量。

其次,由图 6 和图 7 可知,女性有效剂量普遍比 男性高,这是由于女性乳腺、卵巢等辐射随机性危险 度高的组织或器官造成了女性有效剂量高于男性, AP 照射方式下产生最大的有效剂量。射线从体后入 射比体前入射产生的有效剂量要相对小些,原因是更 多的重要器官位于身体前部。当体位偏离 AP 或 PA 照射方式时,有效剂量显著下降,以男性在 OVER-HEAD 照射方式下有效剂量最低。

研究表明,NHMAN 辐射仿真人体模型能很好地 应用于辐射剂量的计算;使用蒙特卡罗程序 MCNP 进行的模拟计算能有效、准确地反映出放射性辐射环

图 6 男性女性在 0.3 MeV 光子源不同照射方式下的有效剂量

比较
$$(10^{-12}Sv \cdot cm^2)$$

Fig.6 Comparison of effective dose equivalent calculated using male phantom with female phantom for 0.3 MeV photon beams per unit fluence incident in various angles

图 7 男性女性在 1.0 MeV 光子源不同照射方式下的有效剂量

比较 $(10^{-12}Sv \cdot cm^2)$

Fig.7 Comparison of effective dose equivalent calculated using male phantom with female phantom for 1.0 MeV photon

beams per unit fluence incident in various angles

境下的不同性别人体的有效剂量。建立符合中国人种 群生理特征的人体体模,建立更详细逼真的人体组织 器官模型,是今后本项研究的努力方向。

参考文献:

- [1] 胡逸民. 肿瘤放射物理学[M]. 北京:原子能出版社, 1999:149-152.
- [2] Han B, Xu XG, Chen TYG. Image-Guided Proton Radiotherapy of lung tumors using proton radiography: A Monte Carlo study on 4DCT patient-specific phantoms[J]. Med. Phys, 2011,38(4):1903-1911.
- [3]张居营,徐樹,石成玉.四维动态数字人体模型的开发及其在放疗计 划中评估器官呼吸运动影响的研究[J].中国医学影像技术, 2006,22(9):1301-1305.
- [4] 吕庆文,陈超敏,周凌宏,等. 精确放射治疗技术的现状与发展[J]. 中 国医学物理学杂志, 2005,22(1):373-375.
- [5] 杨晓霞,胡南,刘岩海. TQ-2000 多通道剂量仪在 TBI 体内相对剂量 测量中的应用[J]. 医疗设备信息, 2007,22(1):87-88.
- [6] 中华人民共和国卫生部, GBZ/T 200.2-2007,辐射防护用参考人,第
 2 部分:主要组织器官质量[S].北京:人民卫生出版社,2007.
- [7] Judith F.briesmeister. MCNP A General Monte Carlo N Particle Transport Code Version 4C[R]. Oak Ridge: Los Alamos National Laboratory Report LA–13709–M, 2000.
- [8] 中华人民共和国卫生部, GB18871-2002, 电离辐射防护与辐射源安 全基本标准[S]. 北京: 人民卫生出版社, 2002.
- [9] International Commission on Radiological Protection. Data for use in protection against external radiation [R]. Oxford, England:Pergamon Press ICRP Publication 51, 1987.