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Abstract
Cerenkov luminescence imaging (CLI) is an emerging optical imaging technique, which has been widely investigated for 
biological imaging. In this study, we proposed to integrate the CLI technique with the radionuclide treatment as a “see-and-
treat” approach, and evaluated the performance of the pinhole collimator-based CLI technique. The detection of Cerenkov 
luminescence during radionuclide therapy was simulated using the Monte Carlo technique for breast cancer treatment as an 
example. Our results show that with the pinhole collimator-based configuration, the location, size and shape of the tumors 
can be clearly visualized on the Cerenkov luminescence images of the breast phantom. In addition, the CLI of multiple 
tumors can reflect the relative density of radioactivity among tumors, indicating that the intensity of Cerenkov luminescence 
is independent of the size and shape of a tumor. The current study has demonstrated the high-quality performance of the 
pinhole collimator-based CLI in breast tumor imaging for the “see-and-treat” multi-modality treatment.

Keywords Cerenkov luminescence imaging · Monte Carlo · Breast tumor · Radionuclide therapy

Introduction

Cerenkov luminescence occurs when a charged particle trav-
els through a medium with a velocity greater than the group 
speed of light in the medium [1]. Charged particles can be 
produced either from the decay of radionuclides directly or 
from secondary charged particles of high energy radiations 
in medical application. With the improved sensitivity of 
the optical detectors [e.g., highly sensitive charge-coupled 
device (CCD) and electron-multiplying charge-coupled 
device (EMCCD)], Cerenkov luminescence imaging (CLI) 
has been exploited as an optical imaging modality for small 

animals [2–6] and also in the biomedical field of human 
studies [7, 8]. CLI is based on the detection of Cerenkov 
luminescence, which is usually generated by radiations from 
radiopharmaceuticals labeled with beta radioisotopes [2, 
8–10]. CLI has been mostly applied in preclinical studies, 
e.g., the tumor localization [9] and the radionuclide uptake 
monitoring in small living animals [11]. For human studies, 
Cerenkov luminescence can be used for endoscopic imag-
ing [12], external imaging of 131I in the thyroid, [13] and 
image guided tumor resection surgery [14]. As a functional 
imaging modality, the CLI also has some advantages such 
as its low-cost and easy-to-operate characteristics compared 
with other imaging modalities such as the positron emission 
tomography (PET) and single photon emission computed 
tomography (SPECT) [15]. For a typical beta-emitting radi-
onuclide (e.g., 90Y and 131I), approximately 1–100 optical 
photons can be produced per decay [16].

The emergence of radionuclide-labeled nanomedicines 
has been rapidly increasing over the past decades because 
their application in cancer diagnosis and treatment has the 
great potential to improve cancer outcomes. It is desired to 
image the distribution of targeted radiotherapeutic agents in 
a patient’s body prior to or during the treatment for optimiz-
ing the treatment strategies and determining the suitability of 
a given agent for a particular patient. Although pre-targeting 
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and imaging prior to the treatment is the common way to 
design the treatment strategy, integrating a “see-and-treat” 
modality can improve the treatment efficiency and reduce 
the potential side effects caused by the pre-imaging process. 
Considering the “free” information of Cerenkov photons 
from the radioisotopes, CLI has the potential to become a 
useful tool for the multi-modality treatment using a single 
radiolabeled molecule. In this work, we have assessed the 
potential of the pinhole collimator-based CLI technique for 
the tumor imaging during radionuclide therapy for the novel 
“see-and-treat” treatment modality for breast cancer.

Materials and methods

Monte Carlo simulation

The Geant4 Monte Carlo (MC) toolkit (version 4.10.4.p02) 
[17, 18] was used to simulate the particle transport and CLI 
of breast tumors. Geant4 is a general-purpose Monte Carlo 
simulation toolkit for particle transport and it has been 
widely used in the field of medical physics. In the current 
study, the “standard low-energy electromagnetic physics” 
and “optical physics” processes (G4Cherenkov and G4Op-
Absorption classes) were applied to simulate the transport of 
both ionizing radiations and optical photons. The wavelength 
of Cherenkov photons in the simulations ranges from 450 
to 650 nm. The production threshold of secondary particles 
was set as 0.01 mm. The radionuclide 90Y (β− emitter) emit-
ting 2.2 MeV end-point energy was selected as the input 
particle source, and the number of radionuclide decays was 
set to 1 × 109 for each simulation run [19]. The simulation 
time was approximately 12 h for each simulation run using 
a 64-thread workstation.

Breast voxel phantom

To simulate a breast cancer patient, a radiation reference 
human phantom with breast tumor(s) was established based 
on the 30-year-old CHRP-female phantom [20, 21] (Fig. 1). 
The voxel size is 0.2 × 0.2 × 0.2 mm3 in this mesh phantom. 
The elemental compositions of tissues and organs were 
obtained from the references of ICRU-46 and ICRP-89 [22, 
23]. Tumors were assumed to be located in the upper-lateral 
quadrant of the right breast (Fig. 1). The 90Y source was uni-
formly distributed within the region of malignant tissue for 
simulating the 90Y-DOTATOC treatment. Optical properties 
(i.e., the absorption coefficient and the scattering coefficient) 
were applied to each segmented volume. Optical properties 
of normal and malignant human breast tissues were based 
on measured values from the study by Ghosh et al. [24], and 
optical properties of the soft tissue, skin, and muscle were 
found from the study by Bashkatov et al. [25, 26] (Fig. 2). 

A constant refractive index of n = 1.4, which is the average 
value in all human tissues, was applied to all of the voxels in 
the phantom [14, 27]. The anisotropy factor g was set to 0.9 
in accordance with the study by Sandell et al. [28].

Cerenkov luminescence imaging settings

A pinhole collimator-based camera was selected to capture 
Cerenkov luminescence generated from radionuclides in 
breast tumors [27], as shown in Fig. 3. The diameter of the 
pinhole is 1 mm. The distance between the phantom and the 
hole is 6 cm, and the distance from the detector to the hole is 
6 cm. The size of the detector array is 10.24 cm × 10.24 cm, 
which has a pixel size of 0.1 mm × 0.1 mm.

Results

CLI performance for localized tumor cases at various 
depths

The CLIs of a single tumor site located at the depth of 1, 
2.5, 5, and 7.5 mm are shown from Fig. 4a–d, respectively. 
The signal of Cerenkov light intensity decreases with the 
increase of the depth of tumor. This is due to the attenuation 
of Cerenkov photons in tissue. The detection efficiency of 
Cerenkov photons as a function of the tumor depth in the 
breast are shown in Fig. 5. The linearity in this semi-log 

Fig. 1  The 30-year-old CHRP-female phantom with a tumor located 
in the upper-lateral quadrant of the right breast
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plot reveals that the signal decreases exponentially with the 
tumor depth.

CLI performance for metastatic tumor cases 
with various concentrations of radionuclides

To explore the CLI quality for metastasis (i.e., multiple 
tumors), two solid tumors with the same size were assumed 
under the same depth. Figure 6a, b show the CLI of multi-
ple tumors and the Cerenkov luminescence intensity profiles 
at the center of the image assuming the same radioactivity 
within these two tumors. Figure 6c, d illustrate the CLI of 
multiple tumors and the Cerenkov luminescence intensity 
profile at the center of the image when the ratio of radio-
activities of two tumors is 2:1, respectively. It can be found 
that the ratio of peak value of Cerenkov luminescence inten-
sity profile is the same as the density of radioactivity set in 
tumors from Fig. 6a–d, when the radioactivity ratio is set 
as 1:1 and 2:1, respectively. Furthermore, when the radio-
activity ratio of 3:1 and 4:1 is investigated, the results also 
show the consistency between the Cerenkov luminescence 
intensity and the density of radioactivity in tumors.

CLI of multiple tumors at different depths 
and shapes

To explore the CLI quality of multiple tumors, a case with 
two tumors located at different depths (0.5 cm and 2 cm 
below the skin) was established. Figure 7a, b show the CLIs 
of multiple tumors and the Cerenkov luminescence inten-
sity profile at the center of the image in the case of differ-
ent distances respectively. The profile peak value decreases 
with the increased tumor depth for the metastatic tumor. 
This observation is caused by the increased attenuation 
of optical photons for a deeper tumor. To account for the 
attenuation effect, a possible method is to perform the image 
reconstruction with multiple images from different detection 
directions with different attenuation depths. To simulate the 
effect of CLI on the irregularity of the tumor, two tumors 
with the shape of sphere and ellipsoid were embedded in 
breast respectively. Figure 8 shows the CLI of the tumors 
with the shape of sphere and ellipsoid. The image shows 
clear profiles of tumors.

Discussion

Using radionuclide labeled Nano-medicine to treat cancer 
is an emerging type of targeted radiation therapy modality 
which has shown promising outcome in recent years [8, 11]. 
In order to make a cancer drug that can be administered 
as planned for a better balance of the treatment efficacy 
and the side-effects, it is desirable to inquire the internal 

Fig. 2  The absorption coefficient and reduced scattering coefficient of 
different types of tissue

Fig. 3  Schematic of the Cerenkov luminescence imaging using a pin-
hole collimator-based camera with a detector array
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distribution of the targeted agents in both animal studies 
and patient treatment. Cherenkov luminescence imaging has 
already been a useful tracing probe tool for animal studies. 
The light yield of the beta-emitters of radionuclide is tens to 
hundreds of optical photons per decay over the wide range 
of wavelength of Cerenkov radiation [16]. With different 
tissue types and different energies of the beta particle, the 
amount of Cerenkov light can be quite different. For clini-
cal radionuclide therapy, when beta-emitter based nuclide 
medicine was used, the CLI technique can also be applied 
along with prior to the treatment or during the treatment, to 
conduct the “see-and-treat” radiotherapy. There are twofold 
meanings for the “see-and-treat” technique. The first one 
is that the CLI can be obtained before the treatment with 
a relatively low dose, and the distribution of the medicine 
can be known with the obtained CLI, which will be useful 
for further prediction of the treatment outcome. The second 
one is that the CLI can be conducted during the treatment for 
real-time dose reconstruction, which is similar to the work 
published by Balkin et al. [29].

Fig. 4  The CLI of tumors at the depth of 1 mm, 2.5 mm, 5 mm, and 7.5 mm

Fig. 5  The detection efficiency of Cerenkov photons as a function of 
tumor depth
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Fig. 6  The CLI for the case of radioactivity ratio is 1:1 between two tumors (a), and the Cerenkov luminescence intensity profile of the CLI (b). 
The CLI for the case of radioactivity ratio is 2:1 between two tumors (c), and the Cerenkov luminescence intensity profile of the CLI (d)

Fig. 7  The CLI of tumors located at the depth of 0.5 cm and 2 cm (a), and the Cerenkov luminescence intensity profile of the CLI (b)
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In this study, we took the breast cancer as an illustrative 
example to explore the feasibility of using the CLI to imple-
ment the “see-and-treat” technique. We used a pinhole col-
limator-based photon detector configuration to simulate the 
CCD configuration and also the pinhole collimator system. 
Using a pinhole camera for imaging the Cerenkov photons 
is advantageous on the infinite depth of field, and also there 
is no vignetting effect. The spatial resolution will be deter-
mined by the size of the hole. Nevertheless, the efficiency is 
lower than using the lens-based CCD camera, which needs 
to be further investigated through experiments.

From the results we can find that with tumors localized 
in different depth, the signal of Cerenkov radiation detected 
by the external camera decreases exponentially. For tumors 
of different sizes, the signal detected by the camera shows 
a linear relationship for the same depth location. As dem-
onstrated from the Figs. 6, 7, 8, the Cerenkov radiation can 
clearly show the contour (shape) of the tumor, which indi-
cates the potential application of visualizing the distribution 
of the radionuclide with the drug delivered. For the condi-
tions of multiple tumors at different depths, the detected 
signal shows difference for the two tumors. Considering 
the attenuation of optical photons, using data from multiple 
directions can reconstruct the distribution and will be ben-
eficial for volumetric visualization. Even that the imaging 
technique in this study was obtained as a two-dimensional 
image, there are some studies with the technique to show the 
depth information about the source from CLI [30], which 
will be investigated in future studies. The noise and back-
ground distribution, which might affect the results, were not 
included in the study.

It should be noted that one of the limitations of applying 
CLI is the weak penetrations of the Cerenkov luminescence 
in biological tissues (a few millimeters only). Therefore, the 

CLI is likely to be more suitable for the shallower tumors 
(e.g., the case presented in the current work). Detailed 
experimental studies should be performed, and various prac-
tical issues need to be explored in future studies prior to the 
clinical application of CLI.

Conclusions

Radionuclide therapy has been a promising cancer treat-
ment modality with the the emergence of Nano-medicine 
and other novel techniques. To study the feasibility of the 
multi-modality treatment, which may potentially provide the 
“see-and-treat” with a single molecule using CLI, we have 
explored the performance of the pinhole collimator-based 
CLI for the case of breast tumors during the radionuclide 
therapy. Our results indicate that the images of Cerenkov 
luminescence could be used to visualize the location, size 
and shape of tumors for the explored situations. The detec-
tion efficiency of Cerenkov photons decreases with the 
increase of the depth of tumor in tissues. The current study 
has demonstrated the feasibility of the pinhole collimator-
based CLI in breast tumor imaging for the “see-and-treat” 
multi-modality treatment.
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