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H I G H L I G H T S

• A spectrometry analysis algorithm based on Richardson-Lucy (R-L) deconvolution and fuzzy inference is developed.

• The algorithm improves radionuclide identification from low-resolution gamma-ray spectra.

• The method was experimentally tested showing enhanced identification performance.
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A B S T R A C T

A spectrometry analysis algorithm based on Richardson-Lucy (R-L) deconvolution and fuzzy inference is de-
veloped to identify radionuclides of overlapping spectra obtained by a low-resolution detector. The effectiveness
of the algorithm was experimentally verified. It is shown that the algorithm can be used for radionuclide analysis
of low-resolution spectra in a marine environment with high accuracy of nuclide identification.

1. Introduction

Identifying low-level radionuclides released from nuclear facilities
is challenged by the presence of a large number of natural radionuclides
of relatively high concentration, e.g. 40 K (11–12 Bq/L) (Kusakabe,
2017). The Compton continuum associated with these natural nuclides
generates high background counts in the low energy tail of the spec-
trum, suppressing some photopeaks required to identify radionuclides.
Marine radioactivity monitoring employs detectors such as HPGe
(Povinec et al., 1996), LaBr3 (Su et al., 2011), or NaI(Tl) (Eleftheriou
et al., 2013). However, the low detection efficiency of HPGe detectors
and the need to cool them limits their use. The radioactivity (1.5 Bq/cc)
generated by LaBr3 itself affects its nuclide identification ability (Menge
et al., 2007). NaI(Tl) detectors have the advantages of robustness and
high detection efficiency, in addition to being relatively cheap. How-
ever, the low energy resolution of the NaI(Tl) detectors causes overlap
between close photopeaks used to identify radionuclides (Chen and Wei
et al., 2009).

Spectrum deconvolution with a predetermined detector response is
an effective means to resolve overlapping indications for improving
resolution (see for example, Beach et al., 2007). In particular, Ri-
chardson-Lucy (R-L) deconvolution has been proved to be effective in
suppressing Poisson noise, and it is easier to extract peak features from
a deconvoluted spectrum (Morháč and Matoušek, 2011). The purpose
of deconvolution is to obtain the peak energy distribution under ideal
conditions, but the deconvolution of the spectrum with the detector-
response matrix may result in additional erroneous peaks (Beach et al.,
2007). We propose here the use of fuzzy inference system to eliminate
theses false peaks.

Fuzzy inference has the ability to produce a credible output from
incomplete, fuzzy or inaccurate input by simulating human decision-
making (Zadeh, 1988). Alamaniotis et al. (2013) were the first to use
fuzzy inference in gamma-ray spectroscopy. In this paper, we propose
to combine R-L deconvolution with fuzzy inference system. To de-
monstrate the concept, the algorithm was applied to the environmental
background spectrum and test spectrum of 241Am in laboratory
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environment. Then, the feasibility of this algorithm in low activity
environment was verified against an ocean background spectrum.

2. Methodology

Before performing spectrum analysis, a detector was used to mea-
sure the gamma-ray spectra and the natural background spectra.
Wavelet transform was then used for noise reduction to eliminate the
influence of ambient interference noise by approximate coefficient ex-
traction and normalization (He et al., 2018). R-L deconvolution was
subsequently used to process the denoised gamma-ray spectrum. A
photopeak-search algorithm was then applied to determine peak posi-
tions (energies). The list of the photopeaks were processed, together
with a nuclide library of radionuclides, using fuzzy inference, to de-
termine the degree of matching between the characteristic peaks of
nuclides in the nuclide library and the searched peaks. The matching
degree was subsequently adjusted by setting constraints of energy and
counts to finalize the list of detected nuclide lists and the corresponding
identification confidences. Further details are given below.

A spectrum can be expressed as:

= +y H x b* 1

where y is an ×N 1 vector representing the measured spectrum, x is the
ideal radionuclide spectrum, b defines the background spectrum, and
the matrix H is the detector response matrix of dimensions NN . R-L
deconvolution (Morháč and Matoušek, 2011) is expressed as:
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where p(x) denotes the probability that of radionuclides being detected,
p(y) is the probability of these nuclides being recorded in the measured
spectrum, and h(j,i) is an the element of H with i,j= 1, …N.

By iteration via Eq. (3), the R-L algorithm converges to the max-
imum likelihood of x. The response matrix, H, for a
76.2 mm×76.2 mm NaI detector (ORTEC Inc.) was obtained using
convolution of the energy deposition spectra with the detector resolu-
tion function (Klusoň and Jánský, 2010). The number of iterations was
set to be 10,000 as was done by Morháč and Matoušek (2011).

The peak-search algorithm first finds all potential peaks, Pi, then
marks the peak positions, peak counts and net counts. The Statistics-
sensitive Non-linear Iterative Peak-clipping (SNIP) algorithm was used
to deduct the background spectra to obtain the net peak counts. The
ratio, Pir , between net counts and peak counts of all potential peaks is
calculated. A threshold, Tp, is applied to all peak positions to remove
some erroneous peaks, and it is not a fixed value. The default value ofTp
in this study was set to 0.1, i.e., the accepted net count (after sub-
tracting the background) at a peak position has to be greater than or
equal to one tenth of its gross peak counts. The impact of the threshold
setting on the analysis results was analyzed in subsequent experiments.

A fuzzy inference system was employing for estimating the level of
confidence in determining the presence or absence of radionuclides in
an energy spectrum. The input of this system was the absolute value of
the energy difference between the characteristic peak, Eij, in the nuclide
library and the potential peak, Pi, closest to Eij, and the output is the
confidence level, Cij, of the characteristic peak. Fuzzy rules were for-
mulated as the following if-then rule statements:

If (Energy Difference is Small), then (Identification Confidence is
High)

If (Energy Difference is Middle), then (Identification Confidence is
Modest)

If (Energy Difference is Large), then (Identification Confidence is

Low).

A process of defuzzification is then applied to map the fuzzy set
output to an accurate output. If one peak position, Pi, matches multiple
characteristic peak positions in the nuclide library, constraint condi-
tions were set by first finding the peak lists, Pi template, , in the background
spectrum, then setting a threshold of energy difference, Tgap, and net
count ratio, Tratio, finding the nearest peak from Pi template, for Pi, and
calculating the ratio, R, between net counts of Pi and Pi template, , so that:

− ≤ >if P P T and R T| |i i template gap ratio,

This reserves the detection certainty of the characteristic peak of a
natural radionuclide in the nuclide library which matches the peak, Pi,
and resets the detection certainty of the characteristic peak of other
radionuclides in nuclide library which matches Pi to 0. The conditions:

− ≤ ≤if P P T and R Ti i template gap ratio,

or

− >if P P T| |i i template gap,

reserve the detection certainty of the characteristic peak of a natural
radionuclide in the nuclide library which matches the peak, Pi, and the
characteristic peak of an unnatural radionuclide which matches the
peak, Pi, with highest detection certainty, and resets the detection
certainty of the characteristic peak of other radionuclides in nuclide
library which matches Pi to 0. Based on gamma-ray spectrum analysis
experiments of 60Co and 137Cs under different measurement conditions,
Tgap and Tratio were, respectively, set to 20 keV and 1.1 in this study.

The identification confidences, Cij, for all characteristic peaks in the
nuclide library were constrained, and the peak position identification
confidences were converted into nuclide identification confidences by
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where Wij indicates the weight of the j-th characteristic peak of the i-th
nuclide, m indicates the number of characteristic peaks of the i-th nu-
clide (Alamaniotis and Tsoukalas, 2015). The weight is the proportion
of each characteristic peak in the nuclide, which is a known value (Ansi
et al., 2007). The value of the confidence ranges from 0 to 1, and the
higher the confidence, the greater the possibility of the presence of this
nuclide in the spectrum. Therefore, the confidence threshold was set to
0.9 based on the experimental analysis of 60Co and 137Cs spectra. The
value of an identification confidence greater than 0.9 indicates that it is
recognized by the system.

3. Results and analysis

A spectroscopy system consisting of a 76mm×76mm NaI(Tl) de-
tector (ORTEC Inc.) with a resolution of approximately 7.7% at
662 keV, was used. A program based on the SDK in the MAESTRO
software (ORTEC Inc.) was written to obtain the gamma-ray spectra.
The radioactive source used in algorithm performance testing was
241Am ( × −9.435 10 3 MBq).

The natural background spectrum in these experiments was re-
corded over 3600 s in the laboratory using a NaI(Tl) detector. Two
methods were applied, for comparison. In the first method, the energy
spectrum was preprocessed by wavelet transform, the peak-search al-
gorithm was directly used to extract peak positions information, then
nuclide identification was carried out by fuzzy inference without de-
convolution. In the second method, the energy spectrum was first
preprocessed by wavelet transform, followed by deconvolution, then
peak positions information was extracted by peak-search algorithm,
subsequently nuclide identification was performed by fuzzy inference
matching the peak positions information of the nuclide library. The
nuclide library consisted of the following natural background nuclides:
40 K, 226Ra, 214Bi, 214Pb, 228Ac, 212Pb, and 208Tl.
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The measured background spectrum contained a relatively high
count in the low-energy region due to the noise of photomultiplier tube
and Compton scattering, and a small portion of the background spec-
trum in the low energy region (about< 30 keV) was removed in the
spectrum analysis. Through deconvolution with the detector-response
matrix H, many small peaks (even though some of them were erroneous
peaks) appeared in the background spectrum in Fig. 1.

Table 1 shows the identification results from the natural back-
ground spectrum, including the matching peak positions of all char-
acteristic peaks, the identification confidences of peak positions, and
the identification confidences of nuclides. Fuzzy inference nuclide
identification applied to the natural background spectrum without de-
convolution was carried out, only two radionuclides (40 K and 212Pb)
were identified with the confidence higher than the threshold (0.9), as
shown in Part A of Table 1. In the process of nuclide identification, a
situation occurred in which a peak position matched multiple char-
acteristic peaks. According to the constraint conditions, the mismatched
characteristic peaks were eliminated by energy difference and net count
rate, and their identification confidences were reset to 0 to reduce the
error recognition rate. It should be noted that the identification con-
fidences of the seven nuclides (40 K, 226Ra, 214Bi, 214Pb, 228Ac, 212Pb,
and 208Tl) were higher than threshold (0.9), when the energy spectrum
was subjected to deconvolution processing and then identified by fuzzy
inference, as shown in Part B of Table 1. The results show that the
introduced algorithm can identify radionuclides present in the low-re-
solution natural background spectrum with high confidence. That is to
say, the R-L deconvolution algorithm in effect enhances the energy
resolution and improves the performance of nuclide identification to-
gether with fuzzy inference.

The algorithmic performance was also tested in an experiment in
which by an 241Am ( × −9.435 10 3 MBq) source was placed in front of the
detector and its spectrum was recorded over a period of 300 s. The
distance from the detector to the source ranged from 100 to 500mm
with an interval of 100mm. The test spectra were first processed by
wavelet transform, followed by deconvolution, and then the back-
ground was subtracted by SNIP algorithm. Nuclide identification was
then performed by fuzzy reasoning. The raw spectrum curve with a
detection distance of 100mm, shown in Fig. 2, clearly showed the

characteristic photopeak of 241Am, and the identification confidence of
241Am was 0.995, higher than threshold (0.9). The same results were
observed in experiments with detection distances of 200, 300, and
400mm. The increase in distance is equivalent to observing a weaker
source activity.

The raw spectrum of 241Am at 500mm was similar to the natural

Fig. 1. Effect of the R-L deconvolution algorithm applied to the natural back-
ground spectrum. (a) Natural background spectrum and (b) Background spec-
trum processed by the R-L algorithm.

Table 1
Identification results from a natural background spectrum.

Part A: Identification from the raw natural background spectrum without
deconvolution

Nuclide Characteristic
Peak (keV)

Matching
Peak (keV)

Confidence of
Peak

Confidence of
Nuclide

214Bi 609.3 665.2853 0.505 0.730
1764 1761.5397 0.990
1120.3 1117.5260 0.990
1238 1237.7419 1
768.4 745.4293 0.885

208Tl 2614.5 2614.5 1 0.768
583.1 539.3449 0.500

226Ra 186.1 132.9007 0.505 0.505
228Ac 911.1 905.7171 0.975 0.747

969.1 948.6514 0.900
338 419.129 0

40K 1460.8 1466.725 0.970 0.970
214Pb 351.9 419.129 0 0.330

295.2 250.2543 0.500
212Pb 238.6 250.2543 0.945 0.945

Part B: Identification from the natural background spectrum after deconvolution
Nuclide Characteristic

Peak (keV)
Matching
Peak (keV)

Confidence of
Peak

Confidence of
Nuclide

214Bi 609.3 634.2303 0.920 0.911
1764 1753.637 0.965
1120.3 1134.27 0.955
1238 1259.28 0.930
768.4 679.6884 0.505

208Tl 2614.5 2614.5 1 1
583.1 583.09 1

226Ra 186.1 185.33 1 1
228Ac 911.1 901.3 0.970 0.982

969.1 969.48 1
338 333.07 0.985

40K 1460.8 1461 1 1
214Pb 351.9 367.16 0.950 0.957

295.2 304.66 0.970
212Pb 238.6 230.79 0.975 0.975

Fig. 2. Raw spectrum of 241Am at 100mm and the spectrum processed by de-
convolution and the SNIP algorithm.
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background spectrum, and the photopeak of 241am was not as visible
due to the low counts, as shown in Fig. 3. The raw spectrum was firstly
smoothed by wavelet transform, then the background was subtracted
by the SNIP algorithm, and then nuclide identification was conducted
by peak-search algorithm and fuzzy inference without deconvolution.

Part A in Table 2 shows the identification results using fuzzy inference
applied to the background-subtracted spectrum without deconvolution.
A total of 14 peak positions were matched. The identification con-
fidence for 40 K, 212Pb, and 214Pb was higher than the threshold (0.9),
indicating that they were identified. However, all other radionuclides,
including 241Am, were not identified. The low energy and low-radio-
activity of 241Am caused it to be concealed by the natural background
radiation. Subsequently, we performed a complete algorithm analysis
for the raw spectrum with deconvolution and fuzzy reasoning. A total of
29 peak positions were matched, and the matching peak of 241Am was
62.09 keV with a confidence of 0.995. The net count rate of 241Am was

± −s6.53 1.86 1.
As the count rate of 241Am decreased further, its characteristic peak

becomes too small to be recognized, even after deconvolution.
Therefore, the minimum number of counts that have to be registered
that allows the methodology to analyze the spectrum should be greater
than about −s7 1. The complete identification results were provided in
Part B of Table 2. When the threshold, Tp, in the peak-search algorithm
was increased from 0.1 to 0.18, the matching peak of 241Am changed to
74.06 keV, and the confidence level was lower than the threshold (0.9).
As the threshold becomes larger, the ratio, Pir , for some potential peaks
is smaller than Tp, resulting in the peak being eliminated and not fed
into the fuzzy inference system. Therefore, the threshold, Tp, has a great
influence on the results of nuclide identification, which needs to be
analyzed and set according to experimental conditions.

Finally, the feasibility of the algorithm in marine environment was
verified. The test spectrum was obtained with the help of the National
Ocean Technology Center (NOTC, Tianjin, China) by placing the de-
tector 400m below sea level and recording the spectrum for 34 h. The
raw spectrum was deconvoluted and then identified by fuzzy inference.
Table 3 shows the identification results of the deconvoluted spectrum of
Fig. 4 using fuzzy inference. A total of 38 peak positions were matched.
The nuclides that contribute the most to the natural background in the
marine environment are 40 K, 214Bi, 214Pb, and the confidence level for
40 K and 214Bi was higher than the threshold (0.9). The matching peak
for 137Cs was 631.5 keV, and the confidence was lower than the
threshold (0.9), indicating that the sea area was not affected by the
nuclear power plant effluent. This experiment confirmed that decon-
volution algorithm and fuzzy inference system can be applied to the low
activity spectrum analysis and accurately identify the radioisotopes in
the marine environment.

4. Conclusions

A low-resolution spectrometry analysis algorithm based on R-L de-
convolution and fuzzy inference was proposed in this study. The

Fig. 3. Raw spectrum of 241Am at 500mm and the spectrum processed by de-
convolution and the SNIP algorithm.

Table 2
Identification results from the 241Am spectrum.

Part A: Identification from the raw spectrum without deconvolution

Nuclide Characteristic
Peak (keV)

Matching
Peak (keV)

Confidence of
Peak

Confidence of
Nuclide

241Am 59.54 92.87 0 0
214Bi 609.3 602.45 0.980 0.794

1764 1587.41 0
1120.3 1137.68 0.945
1238 1262.51 0.920
768.4 773.45 0.985

208Tl 2614.5 1587.41 0 0.268
583.1 602.45 0.500

226Ra 186.1 241.64 0 0
228Ac 911.1 956.42 0 0.284

969.1 956.42 0.960
338 352.79 0

40K 1460.8 1469.42 0.975 0.975
214Pb 351.9 352.79 1 0.993

295.2 301.49 0.98
212Pb 238.6 241.64 0.99 0.990

Part B: Identification from the spectrum with deconvolution and fuzzy reasoning
Nuclide Characteristic

Peak (keV)
Matching
Peak (keV)

Confidence of
Peak

Confidence of
Nuclide

241Am 59.54 62.09 0.995 0.995
214Bi 609.3 597.32 0.960 0.882

1764 1698.56 0.500
1120.3 1129.13 0.970
1238 1247.12 0.970
768.4 770.03 0.995

208Tl 2614.5 1698.56 0 0
583.1 597.32 0

226Ra 186.1 238.22 0 0
228Ac 911.1 930.77 0.935 0.756

969.1 966.68 0.995
338 347.66 0

40K 1460.8 1452.32 0.975 0.975
214Pb 351.9 347.66 0.985 0.982

295.2 303.20 0.975
212Pb 238.6 238.22 1 1

Table 3
Identification results from ocean background spectrum.

Nuclide Characteristic
Peak (keV)

Matching
Peak (keV)

Confidence of
Peak

Confidence of
Nuclide

137Cs 661.7 631.473 0 0
40K 1460.8 1450.608 0.965 0.965
214Pb 351.9 358.428 0.980 0.817

295.2 250.713 0.500
212Pb 238.6 238.188 1 1
214Bi 609.3 603.918 0.985 0.942

1764 1758.723 0.985
1120.3 1144.998 0.920
1238 1300.308 0.500
768.4 771.753 0.990

208Tl 2614.5 2530.263 0.505 0.723
583.1 591.393 0.975

226Ra 186.1 220.653 0.885 0.885
228Ac 911.1 942.093 0.900 0.728

969.1 957.123 0.960
338 358.428 0
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algorithm was test experimentally, showing that it can accurately
identify radionuclides in a low-resolution spectrum when it meets the
minimum detectable value of radionuclides (about −s7 1 for 241Am). The
application of the deconvolution algorithm in effect enhances the en-
ergy resolution and helps to increase the number of identified radio-
nuclides from 2 to 7 in a natural background spectrum. In addition,
optimizing the threshold of the peak search algorithm and fuzzy rea-
soning improved the accuracy of nuclide identification. The energy
spectrum analysis algorithm was successfully applied to a natural low-
resolution spectrum both in the laboratory and in a marine environ-
ment.
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