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Abstract

The importance of preexisting versus acquired drug resis-
tance in patients with cancer treated with small-molecule
tyrosine kinase inhibitors (TKI) remains controversial. The
goal of this study is to provide a general estimate of the size and
dynamics of a preexisting, drug-resistant tumor cell popula-
tion versus a slow-growing persister population that is the
precursor of acquired TKI resistance. We describe a general
model of resistance development, including persister evolu-
tion and preexisting resistance, solely based on the macro-
scopic trajectory of tumor burden during treatment. We
applied the model to 20 tumor volume trajectories of
EGFR-mutant lung cancer patients treated with the TKI erlo-
tinib. Under the assumption of only preexisting resistant cells
or only persister evolution, it is not possible to explain the
observed tumor trajectories with realistic parameter values.
Assuming only persister evolution would require very high
mutation induction rates, while only preexisting resistance

would lead to very large preexisting populations of resistant
cells at the initiation of treatment. However, combining pre-
existing resistance with persister populations can explain the
observed tumor volume trajectories and yields an estimated
preexisting resistant fraction varying from 10�4 to 10�1 at the
time of treatment initiation for this study cohort. Our results
also demonstrate that the growth rate of the resistant popu-
lation is highly correlated to the time to tumor progression.
These estimates of the size of the resistant andpersistent tumor
cell population during TKI treatment can inform combination
treatment strategies such as multi-agent schedules or a com-
bination of targeted agents and radiotherapy.

Significance: These findings quantify pre-existing resistance
and persister cell populations, which are essential for the integra-
tion of targeted agents into themanagement of locally advanced
disease and the timing of radiotherapy in metastatic patients.

Introduction
The emergence of resistance to targeted agents such as small-

molecule tyrosine kinase inhibitors (TKI) is one of the key chal-
lenges in the effort to control cancer. A significant research effort
focuses on the mechanisms of resistance (1–4), in order to deter-

mine the pathways by which resistance arises and identify strategies
to prevent its emergence. An important question of clinical rele-
vance in this context is the temporal evolution of drug resistance.
Resistance may arise either from preexisting subclones or de novo
during therapy (5–9). This distinction is important for the admin-
istration of targeted agents in clinical practice and the combination
of targeted agents with other treatment modalities, such as surgery,
radiotherapy, or thermal ablation in nonmetastatic disease.

From a statistical perspective the probability of preexisting
resistance in amacroscopic tumor is high, due to the large number
of cell divisions necessary to reach a tumor of detectable
size (10–12). This holds when phenomena such as stochastic
drift and variations in fitness conferred with mutations are taken
into account (13, 14). Preexisting resistance has beenwell studied
in non–small cell lung cancer (NSCLC) patients treated with TKI
targeting the epidermal growth factor receptor (EGFR-TKI) espe-
cially for T790M, a common resistance-conferring mutation to
first-generation EGFR-TKIs. It can develop via distinct evolution-
ary paths (5) from a reservoir a drug-tolerant persister cells (8),
and has been found in 1% to 25% of patients pretreatment and
correlated with shorter time to disease progression (15, 16). Even
though some of these results have been attributed to measure-
ment artifacts (17), it seems beyond doubt that preexisting
resistance occurs in some patients.
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In general, a tumor's genomic instability fosters a genetic
diversity, which is the underlying driver for its heterogeneity,
which in general leads to inferior outcomes when treated with
targeted agents. This is not restricted to EGFR/EGFRT790M, but can
be observed in a variety of activating mutations and resistance
mechanisms, as recently comprehensively reviewed (18–20). It
has been demonstrated that allelic frequencies of specific muta-
tions compared with the abundance of the activating EGFR
mutation can predict greater tumor volume response (20, 21).
Piotrowska and colleagues recently also showed that EGFRT790M-
positive and -negative clones do coexist in patients, and that the
changes in their relative abundance reflects the response to various
targeted therapies (22).

Another path to resistance is through evolution from drug-
resistant "persister" cells (23, 24), which has been shown to lead
to resistance to EGFR-TKIs via the T790Mmutation in vitro (5, 8).
Although the evolution of acquired resistance is being thoroughly
investigated in vitro, little is known about its prevalence or impor-
tance in vivo. There is a continuing debate over the importance of
preexisting versus de novo resistance as the predominant cause of
progression in patients on targeted therapy, and there is little
clinical evidence to support one hypothesis over the other. One of
the main reasons for this uncertainty is the fact that biopsies only
provide a limited window, in space as well as in time, into the
process of resistance development and are unlikely to detect small
populations of resistant clones in vivo. PET enables imaging of
certain drug targets directly (25), although imaging ofmicroscop-
ic cell populations in patients remains infeasible.

The aim of this work is to provide an estimate of the size of the
resistant and persister populations in EGFR-mutant lung cancer
patients during treatment with TKIs. We propose a general model
and two restricted models describing only preexisting resistance
and only de novo resistance. The goal is to estimate the sizes of
these populations in vivo based on the macroscopic behavior of
tumor burden, making as few assumptions as possible about the
mechanisms of resistance themselves. We apply the models to
tumor volume trajectories of patients with NSCLC undergoing
treatment with EGFR-TKIs and progressing with a T790M
mutation.

Patients and Methods
Patient population and data acquisition

We identified metastatic EGFR-mutant patients enrolled in
prospective studies treated with erlotinib at our institution
between 2006 and 2014. All patients had a pathologically con-
firmed diagnosis of stage IV adenocarcinoma and the following
characteristics:

* intrathoracic progression, as defined by RECIST
1.1 guidelines (26), at site of previous disease, to ensure a
complete tumor trajectory pretreatment as well as
postprogression

* measurable growth of at least one intrathoracic lesion while
on erlotinib, using 3Dvolumedelineation as describedbelow

* presence of EGFR T790M on clinical molecular profiling of
tumor biopsy at progression

* absence of other treatments during the observation period
All lesions were segmented on all CT slices to arrive at a 3D

volume estimate. Contouring was performed using clinically
commissioned software for radiation treatment planning

(MiMvista Corp). Small nodules surrounded by lung tissue were
contoured using a low threshold (-400HU), while larger primary
tumors were contoured according to clinical standard using soft
and lung tissue windows as appropriate. Complex lesions invad-
ing the mediastinum or chest wall were contoured and reviewed
by a radiation oncologist.

The conversion of tumor volume to cell number was done
based on experimental observations in human NSCLC (27). On
the basis of this work, the average tumor cell density was calcu-
lated to be 2.8� 108/cm3. Although this parameter can vary from
patient to patient, it does not impact the results of this study, as is
further discussed below.

As we fit parameters to tumor growth representing volume
changes by several factors, the relative difference in contouring
error between small and large lesions can become important. To
account for this fact, we assumed a segmentation error of�1mm
on the entire volume surface, that is,

volume error ¼ 2 � 4
3
p

dþ 1
2

� �3

;

where d is the diameter inmm along the longest axis of the lesion.
This error estimate is designed to attribute a larger relative error to
small tumors compared to larger ones. For example, a 1 cm
nodule in the lung would be attributed a 25% volume error.

Models describing the temporal evolution of resistance
Resistance can be conceived of in two fundamentally distinct

ways: as preexisting resistance stemming from subclones already
present at initiation of therapy, or de novo resistance, acquired
during therapy through evolution of drug-tolerant persister
cells (4, 5, 7). We have implemented these two approaches as
special cases of a general model, using a system of ordinary
differential equations as outlined in the Guide to Model Equa-
tions and Assumptions section.

The de novo approach, represented by our persister-evolution
model, assumes a subpopulation of drug-tolerant cells that grows
slowly in the presence of TKIs and can transform into resistant
cells. The preexisting resistance approach assumes an already
completely resistant cell compartment at treatment start, and no
persister population. The purpose of this model simplification to
two special cases is a reduction in the number of fit parameters
from eight (general model) to 5 (preexisting resistance) and 7
(persister-evolution).

Sequential model fitting process and data analysis
For each tumor, we extracted a tumor volume trajectory from

patient CT scans, starting before treatmentwith erlotinib through-
out progression until discontinuation of erlotinib. We excluded
data postprogression in which the patient was no longer on
erlotinib, and similarly before initiation of treatment if the
patient received another drug. The model parameters were
sequentially fit to the tumor volume trajectory according to the
following procedure (formore details see Supplementary Fig. S1).

First, the postprogression growth rates of the resistant popu-
lation (lR) and the pretreatment growth rate (lS)were fitted using
only the relevant subset of the CT scans during either regrowth or
pre-treatment respectively. The underlying assumption here is
that the observed macroscopic growth in these periods is repre-
sentative of the sensitive and resistant population sizes and their
growth rates. In cases where only one pretreatment scan was
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available,lRwas assumed tobe the sameaslS. This is a reasonable
assumption for two reasons. First, there is a trend toward corre-
lation between the two, as described in the results. Second, the last
pretreatment CT was on average only 18.5 days before the start of
erlotinib, that is, an erroneous growth rate would only affect a
short period of time.

Because we model tumor growth using the Gompertz formal-
ism, we convert the growth parameters (l) into volume doubling
times pretreatment (VDTpre) and postprogression (VDTpost) for
illustration purposes. The volume doubling time is not constant
for Gompertz growth and decreases with increasing size. Conse-
quently, we quote the normalized volume doubling time, which
is the doubling time of the tumor at a size of 1cc, to compare
growth of tumors of different sizes. This normalized volume
doubling time is calculated by solving the unmodified Gompertz
growth equation

dV
dt

¼ l log
K
V

� �
V

for a given growth parameter l.
WithVDTpre andVDTpost determined, the remaining parameters

were sequentially fit to predict a complete tumor volume trajec-
tory as a function of time using a weighted least-squares formal-
ism. A detailed description of the sequential parameter fitting
process for an example patient is outlined in the supplementary
material (see Supplementary Fig. S1). Estimation of parameters
and their uncertainties was implemented using the Levenberg–
Marquardt method using the lmfit package in Python3.5. The
workflow and an example patient are shown in the results section.

Guide to model equations and assumptions
Tumor subpopulations can be modeled in a variety of ways,

typically either stochastically as birth-death processes, or deter-
ministically as systems of differential equations (28), and analytic
expressions can be found for both approaches (29, 30). We
describe the evolution of tumor subpopulations using a system
of ordinary differential equations (ODE), similar to previous
approaches (28, 30, 31). The three compartments represented
are drug-sensitive cellsNS, drug-tolerant persister cellsNP and the
resistant compartment NR.

A general model describing the dynamics of these compart-
ments is depicted in Fig. 1. Cells in the drug-sensitive, persister,
and resistant compartments grow according to the Gompertz
model with the growth rates lS, lP, and lR, respectively. Ntotal

represents the total number of cells and the capacity K is set to
4.09 � 1012 cells and constant, derived from data of untreated
NSCLC cancer patients (32). The robustness of the results
towards these assumptions is evaluated and discussed further
below. The interaction of the cell compartments via theNtotal term
in the denominator of the Gompertz growth formulation
(see Fig. 1) leads to competitive release, that is, the accelerated
emergence of the resistant clone as soon as it faces less compe-
tition from other compartments (33–35).

Cell loss, that is, tumor shrinkage, is modeled according to
Norton–Simons dynamics (36), that is, proportional to the
growth rate, and is a summary term including cell loss through
apoptosis as well as other pathways. This is implemented using
the cell loss term featuring the cell loss parameter b and the drug
plasma concentration C(t). All patients included in this study
received a daily oral dose of 150 mg erlotinib, and we modeled

plasma concentrations based on measured patient levels for this
schedule (36, 37). Drug pharmacodynamics are described using a
one-compartment model, with an exponential decay from a
maximum concentration Cmax of 1.136 (mg/mL) with a half live
t1/2 of 20 hours. Lastly, the persister population NP undergoes a
transition to the resistant compartment with a compound muta-
tion probability m. Note that this compound mutation probabil-
ity differs from mutation probabilities in birth-death models in
the sense that it is applied to the net growth, and not to each cell
division in a continuous birth-death process (37). Under these
assumptions the general model including persister-evolution and
preexisting resistance takes the form of the coupled set of ODEs
displayed in Fig. 1.

The general model in Fig. 1 contains eight parameters, three
population sizes and their corresponding growth rates, the cell
loss parameter b and the compound mutation probability m.
Fitting such a large number of parameters simultaneously requires
high-dimensional data, which is arguably not the case for the
tumor growth, regression, and recurrence trajectories at our dis-
posal. To enable model fitting from the tumor trajectory data
collected from our patients, we employ two strategies. First, we fit
the parameters sequentially, using assumptions about the dynam-
ics of the underlying populations (seeMaterials andMethods and
Supplementary Material for a detailed description). Second, we
reduce the generalmodel to two special cases, involving either only
preexisting resistance or only persister-evolution. These strategies
allow us to arrive at robust parameter estimates.

The model assuming only preexisting resistance assumes no
persistent cells (NP ¼ 0), and therefore a sizeable preexisting
resistant compartment has to exist at treatment initiation to
explain the regrowth trajectory. The model assuming only per-
sister-evolution conversely assumes no resistant cells at treatment
start (NR(t ¼ 0) ¼ 0), that is, the all resistant cells are created
through mutation induction from the persistent compartment
after treatment initiation.

Results
Clinical patient data & model fitting

We identified 20 intrathoracic lesions in 17 patients and
analyzed a total of 164 chest CTs (median 7 per patient, inter-
quartile range 5.5–8.5) obtained at a median interval of 8 weeks.
The observation period for every patient was determined by the
time to RECIST progression: the median progression-free survival
(PFS) in the population was 12.5 months, ranging from 4.2 to
37.3 months, comparable with published EGFR-mutant popula-
tions treated with TKIs (38). The average lesion volume before
commencement of erlotinib was 25.1cc. For three patients no pre-
treatment volumes could be estimated, in one case due tomissing
data, in the others due to postobstructive pneumonitis that
rendered exact volume delineation infeasible. These are excluded
from the analysis.

An example patient andmodelfit is shown in Fig. 2: the toppart
(Fig. 2A) shows a subset of the available CT scans (pretreatment,
during response and after progression) for one patient. Themodel
fit for the persister evolution model is demonstrated in Fig. 2B.
The TKI-sensitive population (blue line) first dominates the
population, but shrinks quickly after treatment initiation, the
persister population stays almost stable, while the resistant pop-
ulation (red line) takes over and repopulates the tumor to match
the observed progression trajectory.
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Figure 2C demonstrates the case of only preexisting resistance
and no persister population. Figure 2D shows the parameter
estimates for the volume doubling time pre- and posttreatment
(VDTpre, VDTpost), and the estimates of the persister and resistant
fractions at treatment initiation, in this case 0.05 (preexisting
resistance) and 0.11 (persister-evolution).

Figure 3 shows data andmodel fits for two additional patients,
one with average PFS and rapid growth (PFS 8 months, 50 days
VDT, Fig. 3A and B) and one with long PFS and slow growth (PFS
36 months, 327 days VDT, Fig. 3C and D).

Tumor growth
Our model fits tumor growth up to ten years, as evidenced

by Fig. 3C and D. The pretreatment volume doubling times
observed across the cohort averages 88 days (median 73 days,
range 35–261). Posttreatment doubling times were longer with
an average of 178 days and a median of 127 days (31–484),
although the difference did not reach statistical significance
(P ¼ 0.085, paired t test). Assuming normally distributed tu-
mor volumes and growth rates, there was a strong correlation
between the tumor volume pretreatment and the observed
volume doubling time (P¼ 0.005), that is, larger tumors tended
to grow more slowly.

Table 1 shows growth rates pretreatment and postprogression,
together with PFS for all tumors. We found a strong correlation
between PFS and the posttreatment doubling time (Spearman
rank P¼ 0.005). Three of the patients had two lesions contoured
each (marked with symbols in the table). The growth rates of
lesions within these patients were more homogeneous than
between different patients, the variance being a factor 6 lower

than in the group as a whole. It is not possible to draw definite
conclusions from this observation, but it indicates that in this
cohort different lesions within a patient grow at similar rates.

Population sizes for either only preexisting resistance or only
persister-evolution in patients with NSCLC during treatment
with erlotinib

Figure 4 shows the model predictions for the size of the
resistant population (top) and their error estimates (bottom)
at the initiation of treatment with erlotinib for the model
assuming only pre-existing resistance. The fraction of preexist-
ing resistance (red symbols) ranges from 10�4 to 0.6, the
median across all tumors is 5.3%. The errors estimated in the
lower part are expressed as percentage of the total clonogenic
population and are on the order of approximately 1% for most
tumors. The error relative to the initial resistant fraction itself is
approximately 10% for most tumors, for details see Supple-
mentary Fig. S2A.

For 5 tumors, the predicted fraction of preexisting resistance is
above 20%. These are tumors that demonstrated very little vol-
ume decrease and slow growth of the tumor post progression, but
still exhibited short PFS. Consequently, the model predicts a very
high fraction of preexisting resistance as likeliest explanation of
the observed tumor volume trajectory.

For the persister-evolution model, there is no single optimal
choice for the underlying parameters, because of the larger num-
ber of variables to fit: the fraction of persister cellsNP, their growth
rate lR, and the compound mutation induction probability m.
While the size and growth rate of the persister population is not
known exactly in a patient, it has been observed in vitro that the

Figure 1.

General model and system of differential equations describing the temporal evolution of all subpopulations, including both persister-evolution and
preexisting resistance.
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persister population grows with four times the volume doubling
time of the untreated population (5). Based on these results we
conducted a robustness analysis and assumed a range of three
values for the growthof thepersister population: two, four or eight
times slower than the tumor before therapy. We further explore a
range of mutation induction probabilities m, from 8 down to
10�2. For these combinations we did fit the fraction of persister
cells that would result in the observed tumor growth trajectory.
The results of this parameter exploration are shown in Fig. 5, with
the colored panel indicating the goodness of fit achieved for a
given choices of persister growth rate lP and compoundmutation
induction probability. The panels to the left and right demon-
strate examples of the best fit for the indicated combination of
parameter choices. This demonstrates that depending on the
growth rate of the persister population, no viable solutions can
be found below a specific mutation induction probability. If m
falls below 0.05, the observed trajectories can no longer be
explained by the model. The mutation induction probabilities
above 1 are not realistic, as they indicate that the rate of resistant
cells being created is larger than the net tumor growth, leading to a
declining persister population.

General model: mixed persister-resistant population
As demonstrated above, assuming either only preexisting resis-

tance or only persister-evolution leads to unrealistic parameter
estimates. The former leads to very high estimates (>0.2) for the
fraction of preexisting resistance, while the latter leads to very
high estimates for the mutation induction probability (above
0.05).

For the general model, we assume that the persister population
grows with four times the volume doubling time of the untreated
population, as observed in vitro (5), and that the compound
mutation induction rate is 10�7, based on analyses of the rate
of accumulation of subclonal mutations in lung adenocarcino-
ma (39). We explored the latter assumption further in a detailed
robustness analysis, see below.

Using this general model, we estimated the size of the resistant
population at the beginning of treatment, which leads to the
mixed population size estimates shown in Fig. 6A, together with
their error estimates (Fig. 6B) and detailed growth curves for two
tumors (Fig. 6C). The fraction of preexisting resistance is on
average less than half the size compared to the case of preexisting
resistance only, with a median of 0.027 (red line), and a total

Figure 2.

Schematic overview of the model fitting and parameter extraction process. A, Tumor volume is extracted by contouring serial CT scans. B, Persister-
evolution model. C, Preexisting resistance model, both in logarithmic scale. D, Overview of the extracted parameters and their range. Error bars
represent volume-dependent contouring error as described in Materials and Methods.
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volume fraction <0.1 for all tumors. In this scenario the function
of the persister population is to maintain the tumor volume
during the response period, while the resistant population causes
the regrowth at progression and beyond. A good example for this
is tumor #20, in which the fraction of preexisting resistance is
reduced by several orders of magnitude in the combined model.
This also leads to the largest error estimate for this tumor relative
to the population size (see Supplementary Fig. S2B), the error
expressed as fraction of total clonogens is however only 2%

(see Fig. 6B). This tumor had little volume reduction after TKI
initiation (�20%) but a relatively long time to progression of
16.8 months. In the preexisting resistance only case, the model
was forced to assume a large fraction to account for the small
volume reduction, while in the combined model the persister
population can explain this behavior.

The dynamics of relapse are primarily determined by the initial
fraction of resistant cells and their growth rate (7). Our cohort
shows a strong correlation of the time to progression with post-

Figure 3.

A and B, Patient with a PFS of 8m and a fast-growing tumor (VDT 50 days). C and D, Patient with long PFS of 36.8m and very slow tumor growth with a doubling
time of 327 days. Only persister-evolution model depicted on the left; only preexisting resistance on the right.

Table 1. Growth rates and PFS for all patients sorted by PFS

Tumor number VDTpre (days) VDTpost (days) PFS Tumor number VDTpre (days) VDTpost (days) PFS

1 61.4 (-) 200.2 (-) 4.2 11 - 344.3 (333.8, 355.5) 12.1
2 87.9 (74.8, 107) 37 (34.4, 39.9) 4.3 12 - 132.2 (128.8, 135.7) 12.8
3x - 103.1 (100.6, 105.8) 4.4 13 - 328.5 (229.8, 576) 13.8
4x - 85.4 (72.3, 104.3) 4.4 14 - 483.7 (-) 16.8
5 - 36.3 (-) 5.8 15 - 99.6 (92.6, 107.7) 20.3
6 - 82.6 (-) 7.5 16 84.1 (-) 243.5 (-) 22.9
7o 96.7 (-) 30.6 (-) 8.6 17 - 355.6 (334.9, 379.1) 25.3
8o 35.2 (-) 72.3 (-) 8.6 18 260.5 (-) 327.4 (-) 36.8
9 - 39.9 (39.4, 40.3) 9.3 19{ 45.3 (-) 122.3 (-) 37.3
10 - 209.3 (195.6, 224.9) 12.1 20{ 35.8 (-) 216.9 (-) 37.3

NOTE: Missing pretreatment growth rates are due to availability of only one scan pretreatment. Numbers in parentheses reflect the error in the parameter
estimate; (-) indicates an uncertainty in VDT of <0.1 day. Note the intervals are asymmetric as the error in the growth rate affects the VDT in a nonlinear
fashion. The symbols ({,x,o) mark tumors in the same patient.
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treatment tumor growth rate, though not with the estimated
fraction of resistant cells. This indicates that among those two
factors the growth rate of the resistant population is the main
determinant for time to progression.

Discussion
Preexisting resistance, persister-evolution, and the general
model

Assuming solely persister-evolution leads to high estimates for
the mutation induction probability, many orders of magnitude
higher than those found in the literature ranging from 10�7 to
10�11 (12, 40, 41). These mutation induction probabilities are a
rough estimate within the confines of the model presented, but
indicate that in the tumors analyzed in this study it is unlikely that
acquired resistance alone was responsible for progression. Some
extent of preexisting resistance must have been present to explain
the observed tumor volume trajectories. This is also in line with
observations in patients that TKI-resistant clones share a common
clonal origin and clonal divergence most likely occurred before
initiation of treatment (42, 43).

For the case of only preexisting resistance, the model pro-
duces large population estimates for preexisting resistance

in some tumors, up to 60% for tumor #17 (see Fig. 4). The
reason for these large estimates is that there is no persister
population that can explain trajectories with little volume
shrinkage. If this would indeed have been the case, such a
high fraction of preexisting T790M cells would certainly have
been identified by clinical genotyping, supporting the notion
that this model is invalid.

Nevertheless, even though we used a sequential parameter
fitting process restricted by several assumptions (see Supplemen-
tary Material for detailed example), we could initially not param-
eterize the general model because one tumor trajectory does not
contain enough information tofit the required parameters for two
subpopulations. But with the knowledge that the persister pop-
ulation alone cannot explain the observed progression trajectories
with realistic mutation induction rates, we set the mutation
induction probability to a realistic value (10�7) and estimated
the amount of preexisting resistance that would be required to
explain the observed clinical data. A robustness analysis (see
below), shows that our results do not critically depend on this
assumption. In the general model the function of the persister
population is to maintain the tumor volume during the response
period, while the resistant population causes the regrowth at
progression and beyond, as illustrated by the examples in Fig. 6.

Figure 4.

Population sizes expressed as fractional volume at treatment start assuming only preexisting resistance. Top, fraction of preexisting resistance in
logarithmic scale for 17 tumors, ordered by fraction of preexisting resistance. The labeling corresponds to Table 1. Bottom, error estimates given by
the fitting procedure for the fractional volume, displayed as fraction of the total clonogen number. To view the error expressed as percentage of the
initial fraction, please consult the Supplementary Material.
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The relative errors for the estimated resistant population are on
the order of 10% to 50% for many tumors (see Supplementary
Fig. S2), which is small relative to the total clonogen number
(see Fig. 6B). This exemplifies that naturally we cannot estimate
the size of these populations very accurately based onmicroscopic
growth dynamics. However, it confirms that based on the model
and reasonable assumptions, a preexisting resistant population of
this order of magnitude is necessary to explain the observed
recurrence dynamics.

Even though the estimated preexisting resistant fraction is
small, small enough to be undetected in a biopsy that samples
only a few locations in the tumor, we do predict afinite amount of
resistance present at treatment initiation for all patients in the
cohort. However, within our model it is also conceivable that
progression occurs exclusively due to resistance arising after
initiation of treatment (de novo), even though this was not
observed in our cohort. This could be the case in patients that
have very long PFS, but nevertheless a rapidly growing resistant
population, that is, a tumor that stays radiographically stable over
a long period of time and then grows explosively (volume
doubling time <30 days) without changes in treatment.

Coexistence and fitness of the resistant subpopulation
Our results indicate that a sizeable resistant and persistent

subpopulation coexists with the drug-sensitive population at the
initiation of treatment, which has recently also been shown in
several EGFR-mutant patients (22). We did observe a trend
towards slower post- than pretreatment growth, although the
difference did not reach statistical significance. This would indi-
cate that the resistant T790Mþ population is at a slight fitness
disadvantage, but could also be connected to the fact that the
combined growth of persister and resistant populations can
appear slower than for a purely resistant population. Slightly
deleterious mutations can get fixed in the population even if they
reduce the total fitness value of the tumor, if they emerge early
enough (44). Leder and colleagues measured the fitness of dif-
ferent resistance-conferring mutations to different TKIs, and
showed that the resistance-conferringmutations decreased fitness
in themajority, resulting in growth rates 5% to 40% lower than in
the sensitive population (45). This tendency of the resistant
subpopulation to exhibit a slower growth rate is in line with
other clinical observations (46) and the phenomenon of disease
flare after TKI discontinuation (47).

Figure 5.

Parameter estimation for the persister-evolution model. The panel represents results for three choices of persister growth rate l (1/2, 1/4, and 1/8 of
the untreated growth rate) and several choices of compound mutation induction probability ranging from 10�2 to 8. The color bar represents the
goodness of fit quantified by the residuals of the least-square parameter optimization in logarithmic scale.
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However, this observation might not be applicable to other
oncogenic drivers, such as NSCLC exhibiting mutations in the
anaplastic lymphoma kinase (ALK). In experiments studying the
growth rates of ALK-positive cells lines during treatment with
alectinib, it has been observed that also in the absence of drug,
resistant cell populations can have higher growth rates than their
parental cell lines (48).

Our model only aims at predicting the fraction of persister and
resistant cells at the time of treatment initiation. The size of the
T790M-positive subpopulation at that time is dependent on the
interplay of several complex processes such as clonal selection,
immune system escape, and random drift (49), which are not

described by ourmodel. Nevertheless, from time of TKI initiation
onwards, our three-populationmodel is a valid description of the
underlying dynamics, as the selection pressure exerted by the drug
is strong enough to effectively separate the population into three
compartments: sensitive – persister – resistant.

The coexistence and relative fraction of preexisting resistance
predicted by our model are in line with models of neutral clonal
evolution. Williams and colleagues (39) have demonstrated in a
pan-cancer cohort that within-tumor clonal dynamics are not
dominated by strong selection but are consistent with neutral
evolutionary dynamics, meaning that individual subclones with
distinct mutational patterns (such as T790M) will grow at similar

Figure 6.

Population sizes expressed as fractional volume at treatment start for the combinedmodel. A, Fraction of preexisting resistance (circles) and of persister
cells (squares) in logarithmic scale for 17 tumors. Dotted lines represent median of persister and resistant fraction among all patients. The order of the tumors is
the same as in Fig. 5. Star indicates tumor #20, discussed separately in the Results. B, Error estimates for the fractions of preexisting resistance and persister
cells, displayed as fraction of the total clonogen number. For additional details regarding the sequential fitting process, see Supplementary Material. C, Combined
model growth curves for tumors 2 and 12.
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rates, coexistingwithin the tumor for long periods of timewithout
outcompeting one another.

Tumor growth
The results show that theGompertz growth formalism is able to

simulate the observed size of lung tumors in patients over long
periods of time and multiple orders of magnitude, as illustrated
in Fig. 3C and D. This is an important observation, as we also use
the Gompertzmodel to extrapolate down tomicroscopic popula-
tions, which are not observable by current imaging techniques.
The Gompertz model incorporates an increased growth rate for
small cell populations and is widely applied in cancer growth
modeling (50, 51). We have recently shown that this model
describes the growth of NSCLC better than the exponential model
over all stages of disease (32). Results using an exponential growth
model are discussed further below. It can however be argued that
all sigmoidal growth models exhibiting decreasing growth rates,
such as the Gompertz, Logistic, and Bertalanffy approaches, show
better agreement with experimental data than exponential
growth (50) and would yield similar performance here. Further-
more, other authors have used the assumption of a fixed growth
rate and apatient-specific carrying capacity to express inter-patient
variation in observed growth (52). We have chosen a constant
carrying capacity based on our previous work (32), although it is
likely that a similar fit to the observed trajectories can be achieved
using a variable carrying capacity.

We demonstrate a significant correlation of posttreatment
growth rate to outcome, which has been observed clinically in
patients with lung cancer (53, 54), but no such correlation was
observed for the initial fractions of preexisting resistance. This
underscores again that although we are confident that a sizeable
population of preexisting resistance exists in these patients, on the
order of 0.01 to a few percent of the total, its exact size is subject to
the inherent stochastic nature of interacting cell populations and
therefore difficult to estimate using our simplified model.

Robustness toward assumptions and limitations
The population estimates are robust toward the exact choice of

mutation induction rate. Varying it from 10�3 to 10�11 does not
change the predicted fraction of preexisting resistance (see Sup-
plementary Fig. S3A and S3B). Even assuming a very high muta-
tion induction probability does not yield enough resistant cells
produced by the persister population in such a short time, and the
preexisting compartment has to explain the clinically observed
progression trajectories (see Supplementary Fig. S3C and SD for
two examples). If the resistant compartment would be populated
by many separate mutation events from the persister population,
it would also contradict genomic data that the resistant popula-
tion usually comes from a single clone that transformed, not the
accumulation of many clones that transformed independently
over time (42, 43).

To test the robustness toward the assumption of Gompertzian
growth, we have repeated our entire analysis with an exponential
growth model instead. This leads to even higher estimates of
preexisting resistance, as small populations grow with the same
rate in the exponential model, while they grow faster in the
sigmoidal approaches.

The number of CT scans available impacts our ability to
perform the sequential model fitting process outlined in the
methods. To derive the growth rate and size of the resistant
compartment from the post-treatment scans, at least one scan

after the detection of recurrence (according to RECIST criteria) is
beneficial, but is often not clinically available.

The estimated fractions are also independent of the tumor cell
density (we assumed2.8�108/cm3). There is a rangeof tumor cell
densities reported in the literature, from 105 to 109 (55, 56).
However, a different choice of density would only shift the tumor
trajectory on the log plots displayed, but not affect the VDTs or
persister and resistant fractions estimated by the model. It would
however impact estimates of the absolute numbers of persister
and resistant cells, and relative changes in percentage of tumor
cells versus stroma. This makes the results also independent of
systematic contouring errors. To test this, we contoured several
patients using soft-tissue as well as lung windowing, leading to
different tumor volumes but without effect on the resulting
parameters and fraction sizes.

We have simplified the known heterogeneity of tumors to only
three cell compartments, representing resistant, persister, and
sensitive cells. More realistic descriptions that include a spectrum
of drug sensitivity, growth rate, and mutation probability, would
require significantly more compartments. The available macro-
scopic patient data is insufficient to inform such a detailed
microscopic description.

We have restricted the study population to patients progressing
with a confirmed T790M mutation, to make the sample homo-
geneous regarding the resistance mechanism. The modeling
framework could also capture the dynamics of other, different
resistance mechanisms, such as the transition to small-cell lung
cancer observed clinically (1). A possible limitation is the retro-
spective nature of the study, the number of tumors, and the fact
that we only used patients in which we could measure tumor
volume increase during treatment with erlotinib. Although this
might have skewed the results toward more indolent tumors, it
does not change our conclusions.

Measuring persister populations and preexisting resistance
in vivo

There have been studies measuring the fraction of persister and
resistant cells in vivo. It has been shown that Fluorothymidine
(FLT) PET can detect MET-mediated resistance to EGFR TKIs in
NSCLC(57). FLTPET,whichhas been shown tobe a stablemarker
of cell proliferation, has generally emerged as a predictor of
response to EGFR TKIs in NSCLC (58). The existence of a FLT
PET signal after initiation of TKIs hints at the presence of a
sizeable population of cells that is still proliferating, attributable
to the persister/resistant population. Even though FLT PET
predicts time to progression, it is not trivial to discern if a given
FLT signal comes from a small population proliferating quickly,
or a larger population proliferating slowly. Therefore, the model
described above could be used to transform semi-quantitative
input from imaging modalities such as PET to quantitative esti-
mates for the size of the persistent and resistant cell populations
and estimate the temporal dynamics in between imaging time-
points. Imaging the dynamics of resistant subpopulations in
patients could also be used to validate the model in itself and
enable prediction of patient-specific tumor trajectories based on
early tumor imaging.

Liquid biopsies can overcome some of the limitations of
traditional tissue biopsies, and lately significant advances have
been made specifically in using plasma-based assays to detect
T790M mutations (19). They have the potential to become a
useful clinical tool to tailor therapy to the specific patient
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characteristics and could provide the patient-specific input to
parameterize models such as the one presented here.

Possible applications: exploiting temporal evolutions of
subpopulations

Insights into the temporal evolution of resistant subpopula-
tions could yield useful information to design therapeutic
approaches. For example, knowledge about the size of subpopu-
lations exhibiting resistance can provide useful information to
guide the timing of localized therapeutic interventions, such as
radiotherapy. The recent success of adding durvalumab after
chemoradiation in locally advanced NSCLC has shown how
impactful the integration of new systemic agents can be for earlier
stages of disease (59). However, the fact that the addition of
durvalumab yielded an increase in PFS in all patient subgroups
except EGFR-mutant tumors highlights the fact that strategies to
incorporate EGFR-TKIs into the treatment of locally-advanced
disease are urgently needed.

There are multiple trials exploring various approaches of com-
bining targeted agents with radiation (60), in stage III
(NCT01553942, NCT01822496) as well as metastatic disease
(NCT02314364). Especially for locally advanced NSCLC, there
are remaining questions that can be comprehensively investigated
using computationalmodeling, the best example being the length
of the TKI induction period before starting concurrent chemo-
radiation. There are obvious trade-offs involved: the shorter the
induction period, the lesswe risk competitive release of a dormant
subpopulation and production of new resistant clones from
persister cells. Some induction however is beneficial, as the cell
kill in the sensitive subpopulationmakes the tumormore likely to
be controlled by concurrent chemoradiation and reduces the field
size, leading to less toxicity and other benefits for the patient. To
quantitatively explore such trade-offs using realistic parameters,
our model or similar approaches (61), need to be combined with
traditional radiation biology models to estimate tumor control
probabilities of multimodality regimen in an integrated fashion.

Conclusion
We have applied two separate, simplified resistance models to

clinically observed tumor volume trajectories of EGFR-mutant
patients treated with erlotinib and progressing with a T790M
mutation. Neither a persister-evolution, nor a preexisting resis-
tance model alone could explain the observed progression tra-
jectories. Only persister-evolution would require unrealistically
high mutation induction rates to explain the observations and
would contradict other studies showing the common clonal
history of resistant clones. Only preexisting resistance leads to
unrealistically high fractions of resistant cells at treatment initi-
ation for some patients in the cohort, which is not in line with

pretreatment biopsies. However, combining preexisting resis-
tance with persister cells can explain the observed tumor volume
trajectories, and provides robust estimates of the preexisting
resistant fraction in EGFR-mutant lung cancers that progress due
to a T790M mutation.

The proposed model can be extended to other resistance
conferring mutations and oncogene-drivers and has the potential
to inform combination approaches such as the timing of radio-
therapy in oligometastatic disease, the integration of targeted
agents as induction therapywith radiation in the locally advanced
setting, or combinations of targeted agents.
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