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A B S T R A C T

In scenarios such as vehicle radioactivity monitoring and unmanned aerial vehicle radioactivity monitoring,
the count rate of the 𝛾 spectrum detected by the NaI(Tl) detector is low, the characteristic peak is weak, and
the statistical fluctuation is large. When such a 𝛾 spectrum is processed with the conventional peak-searching
method, the characteristic peak recognition accuracy is low and the nuclide identification rate is reduced.
A peak-searching method based on the generative adversarial network (GAN) is proposed in this study for
low count rate and short-time measurement of a single nuclide 𝛾 spectrum. Compared with the symmetric
zero-area (SZA) method, the characteristic peak recognition accuracy of the GAN method is improved, the
occurrence probability of false peaks is reduced, and the number of false peaks is decreased. Furthermore,
the peak position offset with different time measurement conditions of the GAN method is stable. And the
performance under shielding conditions of the GAN method is also better than that of the SZA method.
. Introduction

The NaI(Tl) detector has many advantages such as mature prepa-
ation techniques, low cost, high gamma-ray detection efficiency, and
igh luminous efficiency. It is widely used in 𝛾 spectrum detection [1].
owever, the energy resolution of the detected 𝛾 spectrum is low [2,3].
he key in the analysis of the 𝛾 spectrum is to calculate and deter-
ine the position of each characteristic peak accurately. In scenarios

uch as vehicle radioactivity monitoring and unmanned aerial vehicle
adioactivity monitoring, the radioactive activity may be small or the
etection distance is generally large. Thus, the count rate of the 𝛾
pectrum detected by the NaI(Tl) detector is low and the characteristic
eak is weak. In addition, in these scenarios, the measurement time
s usually short to improve the detection range and efficiency, the
tatistical fluctuation of the measured energy spectrum is large [4–6].

The symmetric zero-area (SZA) method is a fast, sensitive and
traightforward method for peak searching. It has good recognition
apability for weak and overlapping peaks and has been widely used in
eak searching program or other applications [7–11]. The basic idea is
o perform convolution transformation between the zero-area ‘window’
unction and the measured spectrum data. The convolutional transfor-
ation of a linear substrate is zero, the convolutional transformation of
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the characteristic peak is not zero [12,13]. However, the SZA method
is also affected by smoothing processing to a certain extent. Given
the increasing demand for rapid nuclide recognition, a peak-searching
method with improved performance needs to be developed.

The artificial neural network has been the most widely used tech-
nology in artificial intelligence in the past 10 years. The generative
adversarial network (GAN) is a new type of artificial neural network.
It produces good results in image synthesis, speech synthesis, and text
synthesis [14,15]. In this study, we propose the use of GAN to process
the low count rate 𝛾 spectrum detected with a short time.

2. Methods and experiments

2.1. Overview

The proposed peak-searching algorithm based on GAN has two parts
(Fig. 1), (a) GAN training and (b) peak searching test using the trained
network.

A schematic of GAN training is shown in Fig. 1(a). The training
process includes two parts. (1) Obtaining the sample sets. The sets
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Fig. 1. Schematic of the proposed algorithm. (a) GAN training and (b) use of the trained network to search peaks.
of training sample and target learning sample are required for net-
work training. The training sample can be obtained through direct
measurement with the detector. The target learning sample is mainly
obtained through the following steps. First, the ideal spectrum is ob-
tained through MCNP simulation. And the ideal spectrum is normalized
setting the highest peak to 1. Second, wavelet transform is used to
smooth the natural background spectrum and the training sample
[16], then background subtraction is performed and then the highest
characteristic peak area is calculated. Third, the peak area value is
multiplied by the normalized spectrum to get the target learning sam-
ple. (2) Training the network. The training sample sets are smoothed
by wavelet transform and then inputted into the generator network,
which outputs the generated spectra. Next, the generated spectra and
the target sample sets are inputted into the discriminator network,
which calculates the difference between the generated spectrum and
the target learning sample. The error is fed back, and fine tune training
is performed.

A schematic of the peak-searching test of the trained network is
shown in Fig. 1(b). First, the 𝛾 spectra different from the training
sample sets are measured as testing samples. After wavelet transform
smoothing, the testing sample sets are inputted into the trained gen-
erator network, which outputs the generated spectra. Then, the peak
position is determined by finding the local maximum value in the
generated spectra.
2

2.2. GAN model

GAN is mainly composed of two parts: generator and discriminator
networks. The generator network is to generate new data based on the
characteristics of the input data. In this study, U-Net model was used
as the basic framework of the generator network. U-Net has strong
feature extraction capability, which can extract features from shallow
to very deep levels [17]. The network was optimized for the energy
spectrum, and was finally designed with an eight-layer down-sampling
and up-sampling network structure. The specific network structure,
related parameters and activation functions are shown in Fig. 2(a). The
discriminator network is to evaluate the effect of generated spectrum,
and it was designed with four convolutional layers and a fully con-
nected layer here. The specific network structure, related parameters
and activation functions are shown in Fig. 2(b).

The program running environment was as follows: TensorFlow-CPU
version was 1.31.1, Keras version was 2.1.3, Python version was 3.7,
the training epoch was set to 20,000, and the batch size was set to 64.

2.3. Sample acquisition

In this study, seven types of radionuclides commonly used in the
241 133 57
industry were studied [18]. The seven types are Am, Ba, Co,
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Fig. 2. (Color online) (a) Generator network structure framework and (b) discriminator network structure framework.
Table 1
Characteristic peak energy and branch ratio of seven nuclides.

Nuclides Characteristic peak energy /KeV
(Branch ratio/%)

Nuclides Characteristic peak energy /KeV
(Branch ratio/%)

Nuclides Characteristic peak energy /KeV
(Branch ratio /%)

241Am 59.5(35.9) 60Co 1332.5(99.986)

152Eu

121.8(28.4)
1173.2(99.974) 344.3(26.6)

133Ba
356(62.2) 1408(20.8)
81(34.2) 137Cs 661.7(85.2) 1112.1(13.6)
302.9(18.4) 778.9(13)

57Co 122.06(85.6) 238Pu 43.5(0.0395) 1085.9(9.9)
136.47(10.68) 244.7(7.5)
Table 2
Activity table of seven radioactive sources.

Nuclides 241Am 133Ba 57Co 60Co 137Cs 152Eu 238Pu

Numbering AM-001 BA-001 C7–002 CO-008 CS-008 EU-001 P8-002
Activity/Ci 2.54E−7 9.68E−6 4.16E−6 1.89E−7 1.17E−6 1.15E−5 8.78E−3

60Co, 137Cs, 152Eu, and 238Pu. The characteristic peak energy and
ranch ratio are shown in Table 1. The activity of the radioactive
ources used in the experiment is shown in Table 2.

.3.1. Obtaining the training and testing samples
The radioactive source was measured with different distances and

imes. The background spectrum was first detected for 5 min. The net
ount rate of the highest characteristic peak was made equivalent to
eplace the detection distance because the activity of each radioactive
ource was different. The schematic of the experimental detection is
hown in Fig. 3. The detecting distances for each radioactive source
re shown in Table 3.

Two locations with a net count rate of 5 and 15 cps were recorded
or each radioactive source. Five positions were randomly selected
etween the two locations. In each position, the detector measured
, 10, 15, 20, and 25 s, and the measurement was repeated twice.
total of 350 sets of 𝛾 spectra were formed as the training samples.

In addition, the background spectra of 5, 10, 15, 20, and 25 s were
measured respectively, and each time period was measured 3 times.
They were used later to generate the target learning samples.

The testing samples were different from the training samples. Three
locations with a net count rate of 5, 10 and 15 cps were recorded for
each radioactive source. In each location, the detector measured 2, 3,
5, 10, 15, and 20 s. A total of 126 sets of 𝛾 spectra were formed as the

testing samples.

3

Fig. 3. Schematic of the experimental detection of radioactive sources, A, B, and C
represent different detection positions.

Fig. 4. Simplified NaI(Tl) detector model.

2.3.2. Obtaining the target learning samples

A simplified Monte Carlo model was established (Fig. 4) based on
the NaI(Tl) detector used. The crystal size was 2×2 inches. It was
wrapped with an aluminum shell. The thickness of the front was
0.25 cm, the side was 0.2 cm, the MgO reflection layer was 0.05 cm,
and the glass was 0.2 cm.
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Table 3
Detecting distances for each radioactive source.

Nuclides Background count rate /cps Net count rate /cps Distance /cm Nuclides Background count rate /cps Net count rate /cps Distance /cm

241Am 9.31
5.25 37.2

152Eu 8.55
5.37 131.8

10.3 22.8 10.33 92.3
14.05 18.4 15.63 83.5

137Cs 3.19
4.9 53.7

57Co 20.00
5.7 133

9.4 41.6 11.1 93
14.6 33.2 14.75 87

60Co 1.00
5.83 11.8

238Pu 14.98
5.37 75.2

9.1 9.0 9.93 61.2
14.8 6.7 14.07 55.3

133Ba 7.08
6.57 147.0
9.1 126.1
14.27 107.6
Fig. 5. (a) Measured 60Co 𝛾 spectrum and (b) the corresponding target learning 𝛾 spectrum.
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MCNP5 was used to perform a simulation and the ideal 𝛾 spectra
f seven nuclides were obtained [19]. Then, the method mentioned
n Section 2.1 was used to generate the target learning 𝛾 spectra. A
otal of 350 sets of target learning samples were formed. An example
f the training sample and its target learning sample of 60Co is shown
n Fig. 5.

.3.3. Obtain the testing samples under shielding conditions
As shown in Fig. 6, for each nuclide, the radioactive source was

laced at the location with the net count rate of 15cps recorded
n Section 2.3.1. Next, the shielding material (5 mm steel, 10 mm
teel, 5 mm lead, and 10 mm lead) was placed 2 cm away from the
adioactive source. The detector measured for different times (3, 5, 10,
5, 20, and 30 s for the steel condition; 3, 5, 10, 30, 60, and 120 s for
he lead condition). A total of 168 sets of 𝛾 spectra were formed.

.4. Data processing and analysis

The process of the SZA method is shown in Fig. 7. First, the
ackground subtraction of the testing samples is performed. Second,
he testing samples are processed using the SZA algorithm. Lastly, the
eak position is determined by finding the local maximum value in the
rocessed spectra.

The parameters of the optimal local maximum algorithm with the
wo methods were determined. The possible characteristic peaks were
earched by the algorithm. When the ratio of the difference between
he recorded peak energy and the searched peak energy to the recorded
eak energy was less than the energy window, the peak was considered
o belong to a certain nuclide, and the rest were considered false peaks
20,21]. Through the pre-experiment, the energy window size was set

o 2%. n

4

Fig. 6. Schematic of detection with a shielding material.

. Results and discussion

The training samples in Section 2.3.1 and the target learning sam-
les in Section 2.3.2 were used as training datasets for GAN training.
fter the training was completed, the testing samples in Section 2.3.1
ere processed by the trained GAN and the SZA method. The peak

ecognition results are shown in Section 3.1, and the peak position
ffset results are shown in Section 3.2. The testing samples measured
nder the shielding conditions in Section 2.3.3 were processed by the
wo methods. The results are shown in Section 3.3.

.1. Characteristic peak recognition results

Determining the peak position of each peak is crucial in the analysis
f the 𝛾 spectrum. The more searched characteristic peaks belong to the
uclide, the more likely the nuclide exists. The results are shown below.
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Fig. 7. Schematic of the SZA method for peak searching.
Fig. 8. (Color online) Recognition accuracy of characteristic peaks after peak-searching for the 𝛾 spectrum under each time measurement condition of each nuclide. (a) GAN
method results and (b) SZA method results.
Fig. 8 indicates that the characteristic peak recognition accuracy of
the GAN method (an average of 82.68%) was generally higher than
that of the SZA method (an average of 54.58%). The GAN method
could accurately search for the characteristic peaks of 241Am, 133Ba,
60Co, 137Cs, and 238Pu in all the measured 𝛾 spectra. However, the
SZA method could only accurately search for the characteristic peaks
of 238Pu in the measured 𝛾 spectra.

Several failure cases were encountered when the GAN method was
used to search for the characteristic peaks of 57Co. A possible reason is
that the two characteristic peaks (energies of 122.06 and 136.74 KeV)
are close, as shown in Fig. 9(a). Overlapping peaks affect the judgment
of peak positions. Correspondingly, when the measured 𝛾 spectrum of
this nuclide was processed by the SZA method, the characteristic peak
with the energy of 136.74 KeV could not be found. The GAN method
is better than the SZA method in dealing with overlapping peaks.

For 152Eu, peak searching of the GAN method failed in some cases
with the characteristic peaks (energies of 778.9 and 1112.1 KeV) and
failed in all cases with the characteristic peaks (energies of 1085.9
and 1408 KeV). A possible reason is that the four characteristic peaks
are weak and have large statistical fluctuations under a short time
measurement, as shown in Fig. 9(b). Thus, the peak searching algorithm
cannot judge the peak position well. Besides, there is a partial overlap
between the two characteristic peaks with energies of 1085.9 and
1112.1 KeV. Correspondingly, when the measured 𝛾 spectrum of this
5

nuclide was processed by the SZA method, the characteristic peaks with
energies of 1085.9 and 1408 KeV could not be found, and only with a
few cases the characteristic peaks with energies of 778.9 and 1112.1
KeV could be found. The GAN method is slightly better than the SZA
method in dealing with weak peaks.

Fig. 10 shows that the overall occurrence probability of false peaks
was low (only 16.67% on the average) with the GAN method. Mean-
while, the occurrence probability of false peaks was as high as 86.51%
with the SZA method. For each nuclide, the occurrence probability of
false peaks of the GAN method was lower than that of the SZA method.

Fig. 11 indicates that the number of false peaks of the GAN method
(approximately 0.17 on the average) was much smaller than that of
the SZA method (approximately 2.06 on the average). For every single
nuclide and each time measurement condition, the average number of
false peaks of the GAN method was much smaller than that of the SZA
method. The GAN method could easily identify the characteristic peaks
after processing, and the interference of false peaks was minimal. The
interference of false peaks in the SZA method was high, which would
affect the determination of the characteristic peaks of the nuclides.
When the measurement time increased, the number of false peaks
decreased.
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Fig. 9. (a) Measured peak position of the 𝛾 spectrum under the measurement condition of 15 cps+20 s for 57Co. (b) Measured peak position of the 𝛾 spectrum under the
easurement condition of 15 cps+20 s for 152Eu.
Fig. 10. (Color online) Occurrence probability of false peaks after peak-searching of the
𝛾 spectrum under each time measurement condition of each nuclide. (a) GAN method
results and (b) SZA method results.

3.2. Characteristic peak position offset results

The size of the energy window has a great influence on nuclide
identification and an appropriate energy window size should consider
the peak position offset. The results are shown below.

As shown in Fig. 12, excluding the characteristic peaks that could
not be found, the peak position offset of the GAN method was about
0.4% on the average. In consideration of the maximum offset, the
energy window should be set to 1.2%. The average peak position offset
of the SZA method was small at about 0.2%. However, the peak position
changed under different time measurement conditions. In consideration
of the fluctuations, the energy window should be set to 1%.

For the GAN method, the peak position did not fluctuate under
different time measurement conditions except for 241Am and 60Co. The
mall cases of the peak position fluctuations of the two nuclides may
e due to the uncertainty of the 𝛾 spectrum statistics.
6

Fig. 11. (Color online) Number of false peaks after peak-searching of the 𝛾 spectrum
of each nuclide at each time measurement.

In general, the energy window size for the GAN method is close
to the SZA method. And we find that the peak position under differ-
ent time measurement conditions of the GAN method is more stable
than that of the SZA method. With this feature, we can correct the
peak searching results to improve the accuracy of characteristic peak
recognition.

3.3. Processing results of testing samples under shielding conditions

The testing samples measured under the shielding condition were
processed by the two methods, and the results are shown below.

Fig. 13 (a) indicates that with the same shielding material, the
characteristic peak recognition accuracy of the GAN method was higher
than that of the SZA method. The average recognition accuracy of
characteristic peaks for the different shielding materials was 5 mm steel
> 10 mm steel, 5 mm lead > 10 mm lead. Fig. 13(b) indicates that
the average occurrence probability of false peaks of the GAN method
was much lower than that of the SZA method. For the GAN method,
the average false peak occurrence probability of the four shielding
materials remained low. Fig. 13(c) shows that the total number of false
peaks of the GAN method was smaller than that of the SZA method,
which had little impact on the judgment of characteristic peaks. For the
GAN method, the average number of false peaks of the four shielding
materials remained small.

The number of searched characteristic peaks of 7 nuclides under
different time measurement conditions was counted. The total number
of characteristic peaks of 7 nuclides should be 17, as shown in Table 1.
The results are shown in Fig. 14.

As shown in Fig. 14, given the same shielding material, the number

of characteristic peaks identified by the GAN method was bigger than
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Fig. 12. (Color online) Peak position deviation of each nuclide. The height of the column represents the average offset of all the determined characteristic peaks of the nuclide.
A positive value represents the left offset, and a negative value represents the right offset; the two ends of the vertical line represent the maximum and minimum offsets. For
the characteristic peaks, shown in red on the horizontal axis, cannot be found and therefore no peak position deviation is observed. (a) GAN method results and (b) SZA method
results.
Fig. 13. (a) Average recognition accuracy of characteristic peaks, (b) average occurrence probability of false peaks, and (c) average number of false peaks.
hat identified by the SZA method. With the increase in measurement
ime, the number of identified characteristic peaks increased slightly
hen flattened.

. Conclusion

A peak-searching method of low count rate 𝛾 spectrum under short-
time measurement based on GAN was proposed. The research results
prove that the proposed method improves the recognition accuracy of
characteristic peaks, reduces the occurrence probability of false peaks,
and decreases the number of false peaks when processing low count
rate 𝛾 spectrum under short-time measurement.

When dealing with low count rate 𝛾 spectrum under short-time
measurement in this study, the proposed method has these advantages.
(1) The peak recognition accuracy of characteristic peaks is higher
7

compared with the SZA method and the performance of processing
overlapping and weak peaks is better. (2) The occurrence probability
of false peaks is lower and the number of false peaks is smaller. (3) The
average offset rate of the GAN method is higher than that of the SZA
method, but the offset is more stable. The SZA method has large offset
fluctuations. For the GAN method, the feature of offset stability can
be used to correct the peak searching results. (4) Under the shielding
condition, the recognition accuracy of characteristic peaks of the GAN
method is higher than that of the SZA method. For different shielding
materials, the average recognition accuracy of characteristic peaks is
5 mm steel > 10 mm steel, 5 mm lead > 10 mm lead. Meanwhile, the
average occurrence probability of false peaks and the average number
of false peaks of the GAN method are much lower and smaller than
those of the SZA method.
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Fig. 14. (a) Accurate identification of characteristic peaks for 5 mm steel, (b) 10 mm steel, (c) 5 mm lead, and (d) 10 mm lead.
The proposed method has limitations. The trained network in this
study cannot accurately search for other untrained peaks. Future work
will study more nuclides and quantitative calculation of nuclide activ-
ity.
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