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A deep learning channel estimation scheme in orthogonal
frequency division multiplexing for X-ray communication
(XCOM) is studied. The scheme uses simulated and detected
data obtained with different working parameters and num-
bers of pilots as training and testing data, respectively, for
the deep neural network (DNN) model. The bit-error-rate
performance of the DNN model under various system oper-
ating parameters, numbers of pilot sequences, and channel
obstructions is investigated separately. Experiment results
showed that the deep-learning-based approach can address
the distortion of the air-scintillator channel for XCOM, giv-
ing a performance comparable to those of least-squares and
minimum-mean-square error estimation methods. © 2022
Optical Society of America

https://doi.org/10.1364/OL.443128

X-ray communication (XCOM) is a type of wireless optical
communication technology that uses a modulated X-ray beam
as carrier for data transmission. XCOM is characterized by high
X-ray photon energy and strong penetrability, and is regarded
as an effective method for solving the issue of communication
shielding in communication blackouts [1–3]. Radio interfer-
ence in space has become increasingly complicated with the
increasing number of space exploration missions, and electro-
magnetic interference has become a hidden danger that must
be considered [4–6]. X rays can be protected from electro-
magnetic interference from other communication links during
transmission [7]. X rays need to pass through the cabin shell,
high-temperature plasma, thin atmosphere, and other channels
after emission from the launching end during the landing of the
spacecraft [8–10].Due to the attenuation of x rays in the air and
the uncertainty in X-ray energy deposition by scintillators, tra-
ditional channel estimation methods deteriorate. Hang et al. [7]
demonstrated that the stability of XCOM in the dusty environ-
ment of Mars is better than that of an optical link. Wang et al. [11]
showed that bit error rates (BERs) of on–off keying (OOK) and
pulse position modulation (PPM) are approximately at the 10−4

level with a communication rate of 25 kbps. Our previous work
investigated orthogonal frequency division multiplexing com-
bined with pulse width modulation (OFDM-PWM) in XCOM,

and 360 kbps under 3.8×10−3 was achieved in the experiment
[12]. Moreover, orthogonal frequency division multiplexing
(OFDM), which has been successfully applied in visible light
communication (VLC) systems [13–17], is also used in the
XCOM system due to its resistance to inter-symbol interference
(ISI) in the complex channel. Redundant signals, such as pilots
in the traditional channel estimation scheme, further occupy
spectrum resources. Traditional estimation approaches, such as
least-squares (LS) and minimum-mean-square error (MMSE)
methods, have also been utilized in various conditions [18]. The
LS method is simple and easy to implement but sensitive to
external noise. The MMSE method can successfully address
selectivity in both frequency and time for a fading channel.
Among various solutions to the channel estimation of signals
in optical communication, several machine learning (ML) tech-
niques have already shown their high potential to improve system
performance [19–22]. Because the air-scintillator channel in
XCOM is a time-varying channel, pilots are generally used for
channel estimation, and a deep neural network (DNN) can cap-
ture the potential characteristics of channel changes and predict
the channel well based on the pilot sequence in XCOM due to
its own good predictive ability.

An XCOM channel estimation based on the DNN model is
proposed in this Letter. The XCOM channel is mainly assumed
to be the air-scintillator channel because previous studies have
shown that X-rays can penetrate a plasma channel almost with-
out attenuation. Training data is composed of simulation data
and air-scintillator channel impulse response, and experimen-
tal data are regarded as testing data. The results verify that the
DNN model can learn and distinguish the characteristics of the
XCOM air-scintillator channel. This study pioneers the appli-
cation of channel estimation based on a deep learning method
to XCOM. The experimental results show that the utilization
of deep learning models can achieve better performance than
traditional methods when sufficient pilots exist in the OFDM-
PWM system. Signals with various channel characteristics are
collected by adjusting different system working parameters, such
as the filament current, grid voltage, anode voltage, and distance
between the receiver and transmitter. Deep learning methods can
achieve a data rate of 1.14 Mbps under the existing experimental
conditions at a BER of 9.13×10−4.
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Fig. 1. XCOM system link: (a) XCOM channel model in the
communication blackout, (b) LYSO scintillator excitation spectrum,
(c) diagram of the scintillator detector, and (d) total reflection of
isotropic photons at the surface between the optical coupling agent
and scintillator.

A communication blackout generally occurs at a height of
35–80 km above the ground, as shown in Fig. 1. X rays generated
by electron bombardment of an anode target need to pass through
a channel, such as the thin atmosphere, plasma, or scintillator,
as shown in Fig. 1(a). Due to the high energies of X-rays, a
lutetium–yttrium oxyorthosilicate (LYSO) scintillator detector is
used as the receiver. X rays can deposit energy in the scintillator
and generate visible light that can be detected by the photode-
tector. X rays demonstrate different attenuation coefficients in
air and various light yields in the scintillator because the x rays
emitted by an X-ray tube have a spread of energies, as shown in
Fig. 1(b). Approximately 30% of the photons are lost due to the
self-absorption effect of the LYSO scintillator on visible pho-
tons generated by X-ray deposition. Moreover, X-ray photons
of different energies deposit their energies at varying positions
in the scintillator, as shown in Fig. 1(c). Visible light photons
generated at different positions reach the scintillator at varying
angles, leading to different probabilities of total reflection for
different photons. A large number of isotropic visible light pho-
tons are totally reflected at the exit surface; less than 20% of the
photons will be emitted from the exit surface and detected by
multipixel photon counters (MPPCs) due to the high refractive
index of the LYSO scintillator, which has a refractive index nLYSO

of 1.85 and a critical angle of θc = sin−1(nso/nLYSO), as shown
in Fig. 1(d) [23]. This complex channel presents challenges to
channel estimation.

A block diagram of our proposed scheme tested here is
illustrated in Fig. 2. First, multilevel quadrature amplitude mod-
ulation (M-QAM) is used to modulate N= 64 subcarriers. A real
OFDM signal is generated by constraining the complex vector

Fig. 2. System model of XCOM using the DNN model: (a) air-
scintillator channel impulse response, (b) DNN model, and (c)
diagram of the experimental platform.

of the input to the inverse fast Fourier transform (IFFT), enforc-
ing Hermitian symmetry. Second, OFDM signals are loaded
into an arbitrary waveform generator (RIGOL DG5102), and
the voltage of the output signal is 0–5 V. The electric field dis-
tribution in front of the cathode can be changed by using the
generated OFDM-PWM signal to adjust the grid potential and
control the number of electrons bombarding the anode target.
Then, the intensity of the emitted x ray is changed to realize
X-ray modulation. Third, the detector, which is composed of a
2×2 array of LYSO scintillators (10 × 10 × 5 mm) and an 8×8
array of MPPCs (3 × 3 mm), collects X-ray signals. Finally, the
detected electrical signals are digitized and stored using a real-
time oscilloscope (Keysight DSOS054A) at a sampling rate of
100 MSa/s.

These photons are detected by MPPCs (Hamamatsu S13360-
3050VE, bandwidth > 200 MHz) after multiple reflections
inside the scintillator. As shown in Fig. 2(a), the radioactive
source 241Am, which has a similar energy to the X-ray energy
of the system, is utilized to describe the air-scintillator chan-
nel model in the XCOM and measure the impulse response of
the LYSO scintillator. In order to increase the randomness of
the channel in the simulation, we measured and sampled 241Am
single-photon pulses at different distances as the atmospheric-
scintillator channel impulse response. Energy deposition occurs
in the scintillator when the high-energy photon is incident on
the LYSO scintillator, and a large number of isotropic visi-
ble light photons (approximately 25,000 photons/MeV) with a
peak wavelength of 420 nm are generated at a certain depth
because radioactive sources can generate a single photon. The
impulse response of the air-scintillator channel can be obtained
by recording the arrival times of different photons in the MPPC
detector.

An X-ray channel impulse response model was studied
[12]. A sample-spaced air-scintillator multipath channel h(t)
is described using the channel impulse response of the LYSO
scintillator. The received signal can be expressed as

y(t) = x(t) ⊗ h(t) + n(t), (1)

where ⊗ denotes the circular convolution and x(t) and n(t)
represent transmitted data and additive white Gaussian noise
(AWGN), respectively.

As shown in Fig. 2, offline training and online testing are
included to achieve an effective DNN model for XCOM channel
estimation. The model is trained with received OFDM samples
that are generated with various data and under air-scintillator
channel conditions through simulation in the offline training
stage. The received frequency-domain signal after performing
FFT is expressed as follows:

Y(n) = H(n)X(n) + N(n). (2)

The structure of the DNN model with 256, 600, 300, 150,
8 neurons in its layers is shown in Fig. 2(b). Simulated data
after FFT and the air-scintillator channel impulse response are
regarded as the training data for the DNN model. The input of
the deep learning model is the received data for the pilot block
and one data block. Every eight bits of transmitted data are
grouped on the basis of a single model trained independently in
the output layer and then concatenated in series to generate 256
bits of output data. Experimental data are regarded as the testing
data for the DNN model. In order to ensure good generalization
ability of the network during the training process, the number of
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Fig. 3. BER for different filament currents and grid voltages,
as obtained with (a) DNNs, (b) LS, and (c) MMSE (transmission
distance= 0.15 m, anode voltage= 30 kV, and pilot= 16).

training sets selected in the experiment is 1×107 and the number
of test sets is 3.3×106. During the training process, the loss
function is less than 0.001 and considered to be convergent when
it declines. The experimental platform is shown in Fig. 2(c).

Experimental data collected by the oscilloscope in the online
stage are used to test the DNN model, which can recover trans-
mitted data. The following cross-entropy function was chosen
to act as the loss function in our experiment:

E = −{ˆ︁X(n) log[X(n)] + [1 − ˆ︁X(n)] log[1 − X(n)]}, (3)

where X̂(n) and X(n) are prediction and supervision symbols,
respectively.

Signals from the system are collected under various operating
parameters, such as different distances between transceiver ter-
minals, anode voltages, filament currents, and grid voltages, to
verify the performance and generalization ability of the DNN
model in the experiment and explore a wide parameter space.
These signals are used as the validation set for the DNN model.

The signal sampled at the receiving end passes through the
LS, MMSE, and DNN channel estimation modules respectively.
The result of the LS channel estimation is used as the autocorre-
lation matrix in the MMSE in the experiment. Figure 3 shows a
performance comparison of the DNN, LS, and MMSE methods
when the system was used under different filament currents and
grid voltages. The number of emitted X-ray photons increased as
the filament current increases, thereby reducing the BER of the
system. Moreover, the grid electric potential fails to cut off the
X-ray emission completely when the grid voltage is lower than
65 V, which results in low-level oscillations of the X-ray signals
at the receiver. The low-level oscillations of the detected X-ray
signals are small when the grid voltage of the system exceeds
65 V, and the BER of the system fails to decrease as the grid
voltage increases because the grid potential can cut off the elec-
tron beam emitted by the filament. The LS method provides the
worst performance given the absence of a prior statistic for the
channel during the detection, while the DNN method presents
better robustness to oscillations of the signals at the receiver.

Depending on the application scenario, there are many options
for the energy of the emitted x ray in a real XCOM system.
Hence, the performance of the DNN method was explored at
different anode voltages and distances between the receiver and
transmitter. As shown in Fig. 4, a low anode voltage and a long
distance cause a high attenuation coefficient in the air-scintillator
channel. The background voltage signal exceeds the high-level
voltage of the X-ray signals when the distance between the
receiver and transmitter is 0.18 m because the LYSO array scin-
tillator presents high background radiation. The BER of the
system can only be reduced by increasing the anode voltage.

Fig. 4. BER for different anode voltages and distances between
the receiver and transmitter, as obtained with (a) DNNs, (b) LS,
and (c) MMSE (filament current= 1.4 A, grid voltage= 65 V, and
pilot= 16).

Fig. 5. (a) BER performance versus filament current for the
DNN model with different pilots (8, 16, and 64) (transmission dis-
tance= 0.15 m, anode voltage= 30 kV, and grid voltage= 65 V). (b)
BER performance versus filament current for different SNR of the
training data for the DNN model (pilot= 64). (c) Bandwidth of the
grid-controlled X-ray tube in the XCOM system, as measured with
a logic analyzer. (d) BER performance versus thickness of the alu-
minum sheets placed in the path of the XCOM system with 64 pilots
(inset shows the X-ray energy spectrum).

The DNN method provides higher accuracy than the LS and
MMSE methods under more severe working conditions.

The experimental performance of each of the three channel
estimation methods was tested when the pilot sequence was 8,
16, or 64 to improve the spectrum efficiency of the system. High
spectrum utilization can be estimated with just a few pilots. Fig-
ure 5(a) shows the BER of the system under different filament
currents when the number of pilot frequencies is 8, 16, or 64. The
BER is below 3.8×10−3 when 16 and 64 pilots are used and the
filament current is 1.35 or 1.36 A, which proves that DNNs have
the ability to remember and analyze the complicated character-
istics of the air-scintillator channels when the number of pilots
is small. According to the equivalent calculation of atmospheric
density at different altitudes, the transmission distance is equiv-
alent to 58–80 km under the communication blackout when the
transceiver end is 0.35 m under the normal air channel based
on calculations performed using the Monte Carlo N-Particle
Transport Code System (MCNP) [24].
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The DNN model was trained using different SNR data gener-
ated by simulation in order to verify the generalization ability of
the network, and experimental signals with various filament cur-
rents were used to test different models and compare their BER
performance, as shown in Fig. 5(b). The SNR of the training sig-
nals exceeded 15 dB, and the performance of the DNN model
was lower than 3.8×10−3 when the filament current was 1.4 A.
Figure 5(c) shows that the bandwidth of the grid-controlled X-
ray tube was measured at a distance of 0.15 m to observe the
trend in the signal-intensity decay with increasing frequency.

The influence of the metal wall on channel estimation is
ignored in these results. The x ray shows satisfactory pene-
trating ability in the XCOM, but its energy spectrum changes to
a certain extent after passing through the metal wall. Aluminum
sheets of different thicknesses were placed along the ray’s prop-
agation path to test the effect of the DNN model in a metal shield
channel. Figure 5(d) shows that the DNN-based model still pro-
vides improved results when metal walls of different thicknesses
are added to the channel. The reason for the better performance
of the DNN is that the characteristics of the metal shield chan-
nels can be learned based on the training data generated from
the model.

A method for DNN-based channel estimation of the air-
scintillator in the XCOM system is proposed in this Letter.
For the first time to the best of our knowledge, we used the
single-photon pulse measured by the scintillator to determine
the air-scintillator channel impulse response. We realized a data
rate of 1.14 Mbps and a BER of 9.13×10−4 with the OFDM-
PWM modulation scheme when the system was operated with a
transmission distance of 0.3 m, a filament current of 1.4 A, and
an anode voltage of 30 kV. Additionally, the filament current,
grid voltage, anode voltage, and distance between the receiver
and transmitter were considered during channel estimation. The
experimental results show that the performance of the DNN
method compares favorably with those of the MMSE and LS
methods using the same modulation scheme.

Funding. Chinese Aeronautical Establishment (2018ZC52029); Founda-
tion of the Graduate Innovation Center, Nanjing University of Aeronautics
and Astronautics (kfjj20200609); Fundamental Research Funds for the
Central Universities.

Disclosures. The authors declare no conflicts of interest.

Data availability. Data underlying the results presented in this Letter are
not publicly available at this time but may be obtained from the authors upon
reasonable request.

REFERENCES
1. H. Li, X. Tang, S. Hang, Y. Liu, J. Mu, and W. Zhou, Phys. Plasmas

26, 033503 (2019).

2. H. Li, X. Tang, S. Hang, Y. Liu, and D. Chen, J. Appl. Phys. 121,
123101 (2017).

3. Y. Li, T. Su, L. Sheng, N. Xu, and B. Zhao, Mod. Phys. Lett. B 34,
2050057 (2020).

4. J. A. Robinson, T. L. Thumm, and D. A. Thomas, Acta Astronaut. 61,
176 (2007).

5. A. Riddle, RF Microw. Handb. RF Microw. Appl. Syst. 32, 23-1 (2018).
6. P. Ehrenfreund, C. McKay, J. D. Rummel, B. H. Foing, C. R. Neal, T.

Masson-Zwaan, M. Ansdell, N. Peter, J. Zarnecki, S. MacKwell, M.
A. Perino, L. Billings, J. Mankins, and M. Race, Adv. Sp. Res. 49, 2
(2012).

7. S. Hang, X. Tang, H. Li, Y. Liu, J. Mu, W. Zhou, P. Dang, and S. Lai,
Acta Astronaut. 166, 277 (2020).

8. J. E. Pavlosky and L. G. St. Leger, “Apollo experience report: thermal
protection subsystem,” NASA-TN-D-7564 (NASA, 1974).

9. I. F. Belov, V. Y. Borovoy, V. A. Gorelov, A. Y. Kireev, A. S. Korolev,
and E. A. Stepanov, J Spacecr Rockets 38, 249 (2001).

10. D. E. Mather, J. M. Pasqual, J. P. Sillence, and P. Lewis, AIAA/CIRA
13th International Space Planes and Hypersonics Systems and
Technologies Conference, Capua, Italy, 19May2005, paper 2129.

11. L. Q. Wang, T. Su, B. S. Zhao, L. Z. Sheng, Y. A. Liu, and D. Liu, Acta
Phys. Sin. 64, 120701 (2015).

12. W. Chen, Y. Liu, X. Tang, J. Mu, and S. Lai, Opt. Express 29, 3596
(2021).

13. P. Guan, K. M. Roge, H. C. H. Mulvad, M. Galili, H. Hu, M. Lillieholm,
T. Morioka, and L. K. Oxenlowe, J. Lightwave Technol. 34, 626
(2016).

14. Y.-C. Chi, D.-H. Hsieh, C.-T. Tsai, H.-Y. Chen, H.-C. Kuo, and G.-R.
Lin, Opt. Express 23, 13051 (2015).

15. H. M. Oubei, J. R. Duran, B. Janjua, H.-Y. Wang, C.-T. Tsai, Y.-C. Chi,
T. K. Ng, H.-C. Kuo, J.-H. He, M.-S. Alouini, G.-R. Lin, and B. S. Ooi,
Opt. Express 23, 23302 (2015).

16. Y. Zhao, A. Wang, L. Zhu, W. Lv, J. Xu, S. Li, and J. Wang, Opt. Lett.
42, 4699 (2017).

17. J. Xu, M. Kong, A. Lin, Y. Song, J. Han, Z. Xu, B. Wu, S. Gao, and N.
Deng, Opt. Lett. 42, 1664 (2017).

18. Y. S. Hussein, M. Y. Alias, and A. A. Abdulkafi, in 2016 IEEE 12th
International Colloquium on Signal Processing and Its Applications,
CSPA (2016), pp. 204–209.

19. H. Ye, G. Y. Li, and B. H. Juang, IEEE Wireless Commun. Lett. 7, 114
(2018).

20. H. Lu, M. Jiang, and J. Cheng, IEEE Trans. Commun. 69, 2290
(2021).

21. Y. Zhao, P. Zou, W. Yu, and N. Chi, Opt. Express 27, 22532 (2019).
22. M. A. Jarajreh, E. Giacoumidis, I. Aldaya, S. T. Le, A. Tsokanos, Z.

Ghassemlooy, and N. J. Doran, IEEE Photonics Technol. Lett. 27,
387 (2015).

23. A. Knapitsch, E. Auffray, C. W. Fabjan, J. L. Leclercq, P. Lecoq,
X. Letartre, and C. Seassal, Nucl. Instruments Methods Phys. Res.
Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 628, 385 (2011).

24. Tim Goorley, “Monte Carlo N-Particle transport code system includ-
ing MCNP6. 1, MCNP5-1.60, MCNPX-2.7. 0 and data libraries,”
No. MCNP6. 1/MCNP5/MCNPX-EXE; 004380MLTPL00 (Los Alamos
National Laboratory, 2013).

https://doi.org/10.1063/1.5056210
https://doi.org/10.1063/1.4978758
https://doi.org/10.1142/S0217984920500578
https://doi.org/10.1016/j.actaastro.2007.01.019
https://doi.org/10.1201/9780203503744.ch23
https://doi.org/10.1016/j.asr.2011.09.014
https://doi.org/10.1016/j.actaastro.2019.10.025
https://doi.org/10.2514/2.3678
https://doi.org/10.7498/aps.64.120701
https://doi.org/10.7498/aps.64.120701
https://doi.org/10.1364/OE.415291
https://doi.org/10.1109/JLT.2015.2495188
https://doi.org/10.1364/OE.23.013051
https://doi.org/10.1364/OE.23.023302
https://doi.org/10.1364/OL.42.004699
https://doi.org/10.1364/OL.42.001664
https://doi.org/10.1109/LWC.2017.2757490
https://doi.org/10.1109/TCOMM.2020.3046659
https://doi.org/10.1364/OE.27.022532
https://doi.org/10.1109/LPT.2014.2375960
https://doi.org/10.1016/j.nima.2010.07.007
https://doi.org/10.1016/j.nima.2010.07.007

